找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Methods of Algebraic Geometry in Control Theory: Part II; Multivariable Linear Peter Falb Book 1999 Springer Science+Business Media New Yor

[復(fù)制鏈接]
樓主: Harrison
11#
發(fā)表于 2025-3-23 10:54:02 | 只看該作者
12#
發(fā)表于 2025-3-23 17:43:21 | 只看該作者
The Laurent Isomorphism Theorem: II,Now we wish to give an appropriate algebraic structure to Hank(., ., .). One approach would be to consider the image of .(., ., .) under the Laurent map, which by Theorem 10.16, would be a quasi-projective variety and then to show the image is bijective to Hank(., ., .). We shall use a different approach here.
13#
發(fā)表于 2025-3-23 19:54:37 | 只看該作者
Projective Algebraic Geometry IV: Families, Projections, Degree,We shall use the Main Theorem of Elimination Theory (10.16) to develop some families of varieties.
14#
發(fā)表于 2025-3-24 00:50:12 | 只看該作者
The State Space: Realizations, Controllability, Observability, Equivalence,We have already introduced “realizations” in dealing with the transfer and Hankel matrices (see Chapter 3). In this chapter, we extend the theory developed in Part I (e.g., Chapters 10 and 11).
15#
發(fā)表于 2025-3-24 05:20:22 | 只看該作者
Projective Algebraic Geometry V: Fibers of Morphisms,Our goal here is to extend and amplify the results of Part I, Chapter 18 for the projective situation. The term “variety” means either a projective or quasi-projective variety.
16#
發(fā)表于 2025-3-24 10:30:42 | 只看該作者
Projective Algebraic Geometry VI: Tangents, Differentials, Simple Subvarieties,We recall (I.20) that if .. is an affine variety and . ∈ .., then the (Zariski) ...., ..., is given by any of the following:
17#
發(fā)表于 2025-3-24 12:34:45 | 只看該作者
18#
發(fā)表于 2025-3-24 18:05:51 | 只看該作者
Projective Algebraic Geometry VIII: Intersections,We shall examine in a brief elementary way the notion of intersection of varieties ([F-5], [H-3]). We shall eventually prove Bezout’s Theorem which plays a role in pole placement.
19#
發(fā)表于 2025-3-24 22:40:50 | 只看該作者
20#
發(fā)表于 2025-3-25 01:51:35 | 只看該作者
Methods of Algebraic Geometry in Control Theory: Part II978-1-4612-1564-6Series ISSN 2324-9749 Series E-ISSN 2324-9757
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 19:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
滦平县| 海城市| 永川市| 永善县| 常山县| 南江县| 大关县| 丹东市| 永济市| 长泰县| 扶沟县| 灵川县| 台江县| 修武县| 宜君县| 新郑市| 哈尔滨市| 年辖:市辖区| 崇州市| 右玉县| 福清市| 平和县| 教育| 久治县| 贵定县| 岳西县| 若羌县| 宁化县| 左贡县| 白山市| 左云县| 阿克| 岱山县| 泸溪县| 新郑市| 陆河县| 云阳县| 通海县| 内乡县| 黄梅县| 桐城市|