找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Learning with Limited and Noisy Data; First International Ghada Zamzmi,Sameer Antani,Zhiyun Xue Conference proceedings 2022

[復(fù)制鏈接]
樓主: 無感覺
31#
發(fā)表于 2025-3-26 21:26:35 | 只看該作者
Sara Atito,Syed Muhammad Anwar,Muhammad Awais,Josef Kittlerription of relevant assessment and intervention strategies. The role of the primary care practitioner is highlighted, both as a front-line resource as well as a consumer of specialized pediatric pain treatment 978-1-61737-929-1978-1-59745-476-6
32#
發(fā)表于 2025-3-27 02:40:21 | 只看該作者
33#
發(fā)表于 2025-3-27 07:55:54 | 只看該作者
34#
發(fā)表于 2025-3-27 10:54:49 | 只看該作者
35#
發(fā)表于 2025-3-27 17:06:07 | 只看該作者
36#
發(fā)表于 2025-3-27 20:54:30 | 只看該作者
37#
發(fā)表于 2025-3-28 01:35:34 | 只看該作者
Re-thinking and?Re-labeling LIDC-IDRI for?Robust Pulmonary Cancer Predictionertain nodules are added. We further infer that re-labeling LIDC is current an expedient way for robust lung cancer prediction while building a large pathological-proven nodule database provides the long-term solution.
38#
發(fā)表于 2025-3-28 02:13:55 | 只看該作者
39#
發(fā)表于 2025-3-28 09:56:38 | 只看該作者
Multi-Feature Vision Transformer via?Self-Supervised Representation Learning for?Improvement of?COVIlti-feature Vision Transformer (ViT) guided architecture where we deploy a cross-attention mechanism to learn information from both original CXR images and corresponding enhanced local phase CXR images. By using 10% labeled CXR scans, the proposed model achieves 91.10% and 96.21% overall accuracy te
40#
發(fā)表于 2025-3-28 10:45:01 | 只看該作者
SB-SSL: Slice-Based Self-supervised Transformers for?Knee Abnormality Classification from?MRIuring the pretraining stage. Herein, we propose a slice-based self-supervised deep learning framework (SB-SSL), a novel slice-based paradigm for classifying abnormality using knee MRI scans. We show that for a limited number of cases (<1000), our proposed framework is capable to identify anterior cr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 20:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高安市| 旅游| 北海市| 丰顺县| 丹东市| 扶风县| 卓尼县| 和田市| 文山县| 蓬莱市| 济南市| 柏乡县| 临沭县| 岐山县| 兴隆县| 安岳县| 定兴县| 衢州市| 吴堡县| 来安县| 营山县| 哈密市| 海林市| 大理市| 探索| 邯郸县| 吉安市| 周口市| 南丹县| 都兰县| 宜昌市| 沙洋县| 迁西县| 兴宁市| 手游| 安徽省| 景泰县| 墨玉县| 蒲江县| 富锦市| 赤峰市|