找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Learning with Limited and Noisy Data; Second International Zhiyun Xue,Sameer Antani,Zhaohui Liang Conference proceedings 2023

[復(fù)制鏈接]
樓主: 投降
11#
發(fā)表于 2025-3-23 13:11:30 | 只看該作者
12#
發(fā)表于 2025-3-23 14:58:39 | 只看該作者
13#
發(fā)表于 2025-3-23 19:36:40 | 只看該作者
Label-Efficient Contrastive Learning-Based Model for?Nuclei Detection and?Classification in?3D Cardim Intensity Projection (MIP) to convert immunofluorescent images with multiple slices to 2D images, which can cause signals from different z-stacks to falsely appear associated with each other. To overcome this, we devised an Extended Maximum Intensity Projection (EMIP) approach that addresses issue
14#
發(fā)表于 2025-3-23 22:43:47 | 只看該作者
Affordable Graph Neural Network Framework Using Topological Graph Contractionmory-efficient GNN training framework (C-QSIGN), which incorporates our proposed contraction method along with several other state-of-the-art (SOTA) methods. Furthermore, we benchmarked our proposed model performance in terms of prediction quality and GPU usage against other SOTA methods. We show th
15#
發(fā)表于 2025-3-24 05:03:37 | 只看該作者
16#
發(fā)表于 2025-3-24 09:45:49 | 只看該作者
A Multitask Framework for?Label Refinement and?Lesion Segmentation in?Clinical Brain ImagingD scans. In extensive experiments on both proprietary and public clinical brain imaging datasets, we demonstrate that our end-to-end framework offers strong performance improvements over prevailing baselines on both label refinement and lesion segmentation. Our proposed framework maintains performan
17#
發(fā)表于 2025-3-24 11:28:12 | 只看該作者
18#
發(fā)表于 2025-3-24 17:20:01 | 只看該作者
Feasibility of?Universal Anomaly Detection Without Knowing the?Abnormality in?Medical Imagesnomaly detection model during the validation phase using only normal images, and (3) proposing a simple decision-level ensemble method to leverage the advantage of different kinds of anomaly detection without knowing the abnormality. The results of our experiments indicate that none of the evaluated
19#
發(fā)表于 2025-3-24 19:20:43 | 只看該作者
20#
發(fā)表于 2025-3-25 00:17:05 | 只看該作者
Masked Image Modeling for?Label-Efficient Segmentation in?Two-Photon Excitation Microscopy of intensity and foreground structures, and inter-channel correlations that are specific to microscopy images. We show that these methods are effective for generating representations of TPEM images, and identify novel insights on how MIM can be modified to yield more salient image representations f
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 13:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临西县| 集贤县| 赣榆县| 临江市| 河东区| 佛学| 晋城| 永寿县| 永胜县| 电白县| 白山市| 乐山市| 成都市| 集贤县| 高唐县| 岚皋县| 舟山市| 连南| 高邑县| 宝清县| 乳山市| 明水县| 阿图什市| 安远县| 延川县| 甘洛县| 汪清县| 昌平区| 北流市| 三原县| 延安市| 滦南县| 焉耆| 阿城市| 商南县| 同德县| 迁安市| 沙雅县| 湖口县| 华容县| 布拖县|