找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2011; 14th International C Gabor Fichtinger,Anne Martel,Terry Peters Co

[復制鏈接]
樓主: 兩邊在擴散
31#
發(fā)表于 2025-3-27 00:47:00 | 只看該作者
32#
發(fā)表于 2025-3-27 02:50:21 | 只看該作者
33#
發(fā)表于 2025-3-27 06:18:30 | 只看該作者
34#
發(fā)表于 2025-3-27 12:28:25 | 只看該作者
35#
發(fā)表于 2025-3-27 13:44:32 | 只看該作者
Classification of Alzheimer’s Disease Using a Self-Smoothing Operatorroved accuracy for Alzheimer’s Disease over Diffusion Maps [2] and a popular metric learning approach [3]. State-of-the-art results are obtained in the classification of 120 brain MRIs from ADNI as normal, mild cognitive impairment, and Alzheimer’s.
36#
發(fā)表于 2025-3-27 18:04:59 | 只看該作者
Identifying AD-Sensitive and Cognition-Relevant Imaging Biomarkers via Joint Classification and Regr among brain structure, cognition and disease status. Using the imaging and cognition data from Alzheimer’s Disease Neuroimaging Initiative , database, the effectiveness of the proposed method is demonstrated by clearly improved performance on predicting both cognitive scores and disease status.
37#
發(fā)表于 2025-3-27 23:50:10 | 只看該作者
Regularized Tensor Factorization for Multi-Modality Medical Image Classificationted. We have validated our method on a multi-modal longitudinal brain imaging study. We compared this method with a publically available classification software based on SVM that has shown state-of-the-art classification rate in number of publications.
38#
發(fā)表于 2025-3-28 06:05:44 | 只看該作者
Detection, Grading and Classification of Coronary Stenoses in Computed Tomography Angiographystep and a lumen cross-section estimation step using random regression forests. We show state-of-the-art performance of our method in experiments conducted on a set of 229 CCTA volumes. With an average processing time of 1.8 seconds per case after centerline extraction, our method is significantly faster than competing approaches.
39#
發(fā)表于 2025-3-28 07:56:28 | 只看該作者
Automatic Region-of-Interest Segmentation and Pathology Detection in Magnetically Guided Capsule Endlgorithm was tested on 300 images of different patients with uniformly distributed occurrences of the target pathologies. We correctly segmented 84.72% of bubble areas. A mean detection rate of 86% for the target pathologies was achieved during a 5-fold leave-one-out cross-validation.
40#
發(fā)表于 2025-3-28 10:32:29 | 只看該作者
Conference proceedings 2011lly selected 251 revised papers from 819 submissions for presentation in three volumes. The third volume includes 82 papers organized in topical sections on computer-aided diagnosis and machine learning, and segmentation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
腾冲县| 始兴县| 尼木县| 洛扎县| 会宁县| 凤阳县| 乌鲁木齐县| 杭锦旗| 江门市| 桓仁| 广安市| 咸丰县| 东兰县| 洪江市| 福清市| 湾仔区| 晴隆县| 乐东| 始兴县| 瓮安县| 伊春市| 临夏市| 石首市| 大庆市| 察雅县| 萍乡市| 阿瓦提县| 乐昌市| 简阳市| 阳城县| 内乡县| 保亭| 和静县| 浑源县| 连城县| 桂东县| 卢龙县| 涟水县| 威远县| 新和县| 阳原县|