找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention ? MICCAI 2017; 20th International C Maxime Descoteaux,Lena Maier-Hein,Simon Duch

[復制鏈接]
樓主: 毛發(fā)
41#
發(fā)表于 2025-3-28 18:17:05 | 只看該作者
42#
發(fā)表于 2025-3-28 22:43:28 | 只看該作者
Colin J. Brown,Kathleen P. Moriarty,Steven P. Miller,Brian G. Booth,Jill G. Zwicker,Ruth E. Grunau,A
43#
發(fā)表于 2025-3-29 00:56:59 | 只看該作者
Jeffrey Glaister,Aaron Carass,Dzung L. Pham,John A. Butman,Jerry L. Prince
44#
發(fā)表于 2025-3-29 05:08:28 | 只看該作者
45#
發(fā)表于 2025-3-29 09:19:19 | 只看該作者
46#
發(fā)表于 2025-3-29 15:29:28 | 只看該作者
47#
發(fā)表于 2025-3-29 16:49:11 | 只看該作者
The Active Atlas: Combining 3D Anatomical Models with Texture Detectorst way to study brain anatomy at the level of neurons. The procedure for building histological atlas changed little since 1909 and identifying brain regions is a still a labor intensive process performed only by experienced neuroanatomists. Existing digital atlases such as the Allen Reference Atlas a
48#
發(fā)表于 2025-3-29 19:48:12 | 只看該作者
49#
發(fā)表于 2025-3-30 01:10:48 | 只看該作者
Holistic Mapping of Striatum Surfaces in the Laplace-Beltrami Embedding Spacectivity and animal studies, however, indicate striatum-cortical inter-connections do not always follow such subdivisions. For the holistic mapping of striatum surfaces, conventional spherical registration techniques are not suitable due to the large metric distortions in spherical parameterization o
50#
發(fā)表于 2025-3-30 04:59:52 | 只看該作者
Novel Local Shape-Adaptive Gyrification Index with Application to Brain Developmental/sulcal regions that may be functionally unrelated and also often blurs local gyrification measurements. We propose a novel adaptive kernel for quantification of the local cortical folding, which incorporates neighboring gyral crowns and sulcal fundi. The proposed kernel is adaptively elongated to
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 01:37
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
许昌市| 汶上县| 盖州市| 丰都县| 临汾市| 定结县| 连山| 威远县| 苗栗县| 田阳县| 尤溪县| 尼木县| 海淀区| 松潘县| 宁都县| 湾仔区| 休宁县| 仁寿县| 义乌市| 垫江县| 灵台县| 南京市| 潼南县| 太仆寺旗| 汉中市| 赣州市| 泸定县| 成安县| 方正县| 长垣县| 越西县| 喜德县| 夏河县| 永福县| 石林| 香港 | 桑日县| 济阳县| 紫金县| 富平县| 楚雄市|