找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention ? MICCAI 2017; 20th International C Maxime Descoteaux,Lena Maier-Hein,Simon Duch

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 08:53:27 | 只看該作者
Deep Multi-task Multi-channel Learning for Joint Classification and Regression of Brain Statusmagnetic resonance imaging (MRI) data, since these two tasks are highly correlated. Although several joint learning models have been developed, most existing methods focus on using human-engineered features extracted from MRI data. Due to the possible heterogeneous property between human-engineered
52#
發(fā)表于 2025-3-30 12:26:04 | 只看該作者
Nonlinear Feature Space Transformation to Improve the Prediction of MCI to AD Conversion to target the disease process early. In this paper, we present a novel nonlinear feature transformation scheme to improve the prediction of MCI-AD conversion through semi-supervised learning. Utilizing Laplacian SVM (LapSVM) as a host classifier, the proposed method learns a smooth spatially varyin
53#
發(fā)表于 2025-3-30 16:38:41 | 只看該作者
54#
發(fā)表于 2025-3-30 22:53:00 | 只看該作者
Latent Processes Governing Neuroanatomical Change in Aging and Dementiamodate neural systems with high susceptibility to deleterious factors. Due to the overlap, the separation between aging and pathological processes is challenging when analyzing brain structures independently. We propose to identify multivariate latent processes that govern cross-sectional and longit
55#
發(fā)表于 2025-3-31 04:18:41 | 只看該作者
A Multi-armed Bandit to Smartly Select a Training Set from Big Medical Datadifferent datasets. Simply including all the data does not only incur high processing costs but can even harm the prediction. We formulate the smart and efficient selection of a training dataset from big medical image data as a multi-armed bandit problem, solved by Thompson sampling. Our method assu
56#
發(fā)表于 2025-3-31 06:42:53 | 只看該作者
57#
發(fā)表于 2025-3-31 12:19:31 | 只看該作者
58#
發(fā)表于 2025-3-31 14:32:23 | 只看該作者
59#
發(fā)表于 2025-3-31 20:26:37 | 只看該作者
Maximum Mean Discrepancy Based Multiple Kernel Learning for Incomplete Multimodality Neuroimaging Dalow-rank matrix completion (.imputing the missing values and unknown labels simultaneously) and multi-task learning (.defining one regression task for each combination of modalities and then learning them jointly), are unable to model the complex data-to-label relationship in AD diagnosis and also i
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 00:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陇南市| 伊吾县| 桃源县| 周至县| 济源市| 江孜县| 甘肃省| 荥经县| 精河县| 永州市| 海阳市| 青海省| 盐源县| 游戏| 秦安县| 黎平县| 孝昌县| 新疆| 贺兰县| 五莲县| 青浦区| 芒康县| 上饶县| 攀枝花市| 巴林左旗| 彩票| 洞口县| 尚义县| 沅陵县| 思南县| 原平市| 花垣县| 苏尼特右旗| 祁连县| 上高县| 曲麻莱县| 湖北省| 航空| 麦盖提县| 临沭县| 莲花县|