找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023; 26th International C Hayit Greenspan,Anant Madabhushi,Russell Tay

[復(fù)制鏈接]
樓主: Opiate
51#
發(fā)表于 2025-3-30 10:19:01 | 只看該作者
rom the thematic hook “organization and knowledge” to the various theoretical perspectives. The concept of knowledge has gained much popularity in the organizational discourse of recent years, both in the context of popular and practically oriented management and organizational doctrines as well as
52#
發(fā)表于 2025-3-30 14:58:09 | 只看該作者
Yiming Qian,Liangzhi Li,Huazhu Fu,Meng Wang,Qingsheng Peng,Yih Chung Tham,Chingyu Cheng,Yong Liu,Ricen und damit in der Verwendung von Macht kommt: Dabei gewinnt vor allem die Orientierung an Person und Gruppe massiv an Bedeutung. Auf eine Kurzformel gebracht bedeutet dies: Erfolgreiche Führung muss neben der Organisationsdynamik eine Expertise für die Gruppendynamik entwickeln. Allerdings stehen
53#
發(fā)表于 2025-3-30 19:31:49 | 只看該作者
54#
發(fā)表于 2025-3-31 00:28:59 | 只看該作者
SLPT: Selective Labeling Meets Prompt Tuning on?Label-Limited Lesion Segmentationbel-limited scenarios can lead to overfitting and suboptimal performance. Recently, prompt tuning has emerged as a more promising technique that introduces a few additional tunable parameters as prompts to a task-agnostic pre-trained model, and updates only these parameters using supervision from li
55#
發(fā)表于 2025-3-31 02:22:11 | 只看該作者
COLosSAL: A Benchmark for?Cold-Start Active Learning for?3D Medical Image Segmentationmance when trained on a fully-annotated dataset. However, data annotation is often a significant bottleneck, especially for 3D medical images. Active learning (AL) is a promising solution for efficient annotation but requires an initial set of labeled samples to start active selection. When the enti
56#
發(fā)表于 2025-3-31 07:01:56 | 只看該作者
57#
發(fā)表于 2025-3-31 11:41:36 | 只看該作者
58#
發(fā)表于 2025-3-31 16:30:40 | 只看該作者
PLD-AL: Pseudo-label Divergence-Based Active Learning in?Carotid Intima-Media Segmentation for?Ultraod that measures its thickness and roughness during routine ultrasound scans. Although advanced deep learning technology has shown promise in enabling automatic and accurate medical image segmentation, the lack of a large quantity of high-quality CIM labels may hinder the model training process. Act
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 06:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
无锡市| 聂拉木县| 昌江| 广灵县| 景谷| 望谟县| 新化县| 丽江市| 轮台县| 黔西县| 邢台市| 普兰县| 辉县市| 承德市| 河源市| 石嘴山市| 宣恩县| 房山区| 武隆县| 武威市| 东台市| 琼海市| 合阳县| 江华| 东辽县| 平远县| 应城市| 大英县| 蒲江县| 恩平市| 陆河县| 汝州市| 阳春市| 阿城市| 高邮市| 邛崃市| 峡江县| 夏津县| 延寿县| 淮安市| 霍邱县|