找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2022; 25th International C Linwei Wang,Qi Dou,Shuo Li Conference procee

[復(fù)制鏈接]
樓主: 武士精神
51#
發(fā)表于 2025-3-30 08:39:05 | 只看該作者
UNeXt: MLP-Based Rapid Medical Image Segmentation Networkd computational complexity while being able to result in a better representation to help segmentation. The network also consists of skip connections between various levels of encoder and decoder. We test UNeXt on multiple medical image segmentation datasets and show that we reduce the number of para
52#
發(fā)表于 2025-3-30 13:37:33 | 只看該作者
Exploring Smoothness and Class-Separation for Semi-supervised Medical Image Segmentationding high-quality prototypes, in order to make each class distribution compact and separate different classes. We evaluated our SS-Net against five recent methods on the public LA and ACDC datasets. Extensive experimental results under two semi-supervised settings demonstrate the superiority of our
53#
發(fā)表于 2025-3-30 17:05:09 | 只看該作者
54#
發(fā)表于 2025-3-30 23:14:04 | 只看該作者
55#
發(fā)表于 2025-3-31 01:46:49 | 只看該作者
Stroke Lesion Segmentation from?Low-Quality and?Few-Shot MRIs via?Similarity-Weighted Self-ensemblinefine the coarse prediction via focusing on the ambiguous regions. To overcome the few-shot challenge, a new Soft Distribution-aware Updating strategy trains the Identify-to-Discern Network in the direction beneficial to tumor segmentation via respective optimizing schemes and adaptive similarity ev
56#
發(fā)表于 2025-3-31 07:40:39 | 只看該作者
Edge-Oriented Point-Cloud Transformer for?3D Intracranial Aneurysm Segmentationion graph is constructed where connections across the edge are prohibited, thereby dissimilating contexts of points belonging to different categories. Upon that, graph convolution is performed to refine the confusing features via information exchange with dissimilated contexts. In IHE, to further re
57#
發(fā)表于 2025-3-31 10:09:49 | 只看該作者
mmFormer: Multimodal Medical Transformer for?Incomplete Multimodal Learning of?Brain Tumor Segmentat semantics corresponding to tumor region; a decoder that performs a progressive up-sampling and fusion with the modality-invariant features to generate robust segmentation. Besides, auxiliary regularizers are introduced in both encoder and decoder to further enhance the model’s robustness to incompl
58#
發(fā)表于 2025-3-31 15:33:26 | 只看該作者
Multimodal Brain Tumor Segmentation Using Contrastive Learning Based Feature Comparison with?Monomodto solve incomparable issue between features learned from multimodal and monomodal images. In the experiments, both in-house and public (BraTS2019) multimodal tumor brain image datasets are used to evaluate our proposed framework, demonstrating better performance compared to the state-of-the-art met
59#
發(fā)表于 2025-3-31 21:28:40 | 只看該作者
60#
發(fā)表于 2025-3-31 22:21:44 | 只看該作者
NestedFormer: Nested Modality-Aware Transformer for?Brain Tumor Segmentationsted Modality-aware Feature Aggregation (NMaFA) module, which enhances long-term dependencies within individual modalities via a tri-orientated spatial-attention transformer, and further complements key contextual information among modalities via a cross-modality attention transformer. Extensive exp
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 05:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹寨县| 永德县| 黑龙江省| 大埔区| 巴彦县| 泸水县| 峨山| 汝南县| 永嘉县| 龙陵县| 深水埗区| 牡丹江市| 施秉县| 克山县| 修武县| 桓仁| 于都县| 朝阳县| 唐山市| 仙桃市| 三亚市| 丰台区| 南平市| 柘城县| 余干县| 玛多县| 东阳市| 新兴县| 卢龙县| 兰西县| 杭锦后旗| 开鲁县| 姜堰市| 甘南县| 北宁市| 荥阳市| 仁怀市| 密云县| 咸阳市| 民和| 沙河市|