找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2022; 25th International C Linwei Wang,Qi Dou,Shuo Li Conference procee

[復制鏈接]
樓主: Lactase
11#
發(fā)表于 2025-3-23 09:49:36 | 只看該作者
12#
發(fā)表于 2025-3-23 14:06:43 | 只看該作者
SVoRT: Iterative Transformer for?Slice-to-Volume Registration in?Fetal Brain MRIing state-of-the-art methods. Experiments with real-world MRI data are also performed to demonstrate the ability of the proposed model to improve the quality of 3D reconstruction under severe fetal motion.
13#
發(fā)表于 2025-3-23 20:49:12 | 只看該作者
Double-Uncertainty Guided Spatial and?Temporal Consistency Regularization Weighting for?Learning-Basistent with that of the student model. More importantly, instead of searching for a fixed weight, the teacher enables automatically adjusting the weights of the spatial regularization and the temporal consistency regularization by taking advantage of the transformation uncertainty and appearance unc
14#
發(fā)表于 2025-3-24 01:30:08 | 只看該作者
On the?Dataset Quality Control for?Image Registration Evaluationtasets, we identified and confirmed a small number of landmarks with potential localization errors and found that, in some cases, the landmark distribution was not ideal for an unbiased assessment of non-rigid registration errors. Under discussion, we provide some constructive suggestions for improv
15#
發(fā)表于 2025-3-24 05:07:57 | 只看該作者
Dual-Branch Squeeze-Fusion-Excitation Module for?Cross-Modality Registration of?Cardiac SPECT and?CTinvestigated before. In this paper, we propose a Dual-Branch Squeeze-Fusion-Excitation (DuSFE) module for the registration of cardiac SPECT and CT-derived .-maps. DuSFE fuses the knowledge from multiple modalities to recalibrate both channel-wise and spatial features for each modality. DuSFE can be
16#
發(fā)表于 2025-3-24 09:58:25 | 只看該作者
17#
發(fā)表于 2025-3-24 11:46:08 | 只看該作者
Non-iterative Coarse-to-Fine Registration Based on Single-Pass Deep Cumulative Learning Network (NICE-Net) for deformable image registration. In the NICE-Net, we propose: (i) a Single-pass Deep Cumulative Learning (SDCL) decoder that can cumulatively learn coarse-to-fine transformations within a single pass (iteration) of the network, and (ii) a Selectively-propagated Feature Learning
18#
發(fā)表于 2025-3-24 17:38:41 | 只看該作者
19#
發(fā)表于 2025-3-24 19:48:28 | 只看該作者
20#
發(fā)表于 2025-3-25 00:01:00 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 21:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
沭阳县| 小金县| 张北县| 安阳市| 通榆县| 陇川县| 大安市| 黄梅县| 兰考县| 遂川县| 贵德县| 镇巴县| 安吉县| 巴青县| 龙门县| 师宗县| 高州市| 赤峰市| 富顺县| 平顺县| 吉安县| 会泽县| 镇赉县| 浦城县| 军事| 正宁县| 平顺县| 辽中县| 阜康市| 襄垣县| 彰化市| 溧阳市| 鄯善县| 固阳县| 奎屯市| 礼泉县| 临漳县| 临江市| 潢川县| 南江县| 若羌县|