找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021; 24th International C Marleen de Bruijne,Philippe C. Cattin,Caroli

[復制鏈接]
樓主: Body-Mass-Index
31#
發(fā)表于 2025-3-26 22:29:16 | 只看該作者
32#
發(fā)表于 2025-3-27 04:41:55 | 只看該作者
0302-9743 ational Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021, held in Strasbourg, France, in September/October 2021.*.The 531 revised full papers presented were carefully reviewed and selected from 1630 submissions in a double-blind review process. The papers are org
33#
發(fā)表于 2025-3-27 06:21:34 | 只看該作者
34#
發(fā)表于 2025-3-27 13:00:17 | 只看該作者
Sli2Vol: Annotate a 3D Volume from a Single Slice with Self-supervised Learningchmarks, including the ones that are unseen during training. Our results show . of the proposed approach across data from different machines and with different SOIs: a major use case of semi-automatic segmentation methods where fully supervised approaches would normally struggle.
35#
發(fā)表于 2025-3-27 15:04:50 | 只看該作者
Self-supervised Multi-modal Alignment for Whole Body Medical Imaging unsupervised manner. (iii) Finally, we use these registrations to transfer segmentation maps from the DXA scans to the MR scans where they are used to train a network to segment anatomical regions without requiring ground-truth MR examples. To aid further research, our code is publicly available (.).
36#
發(fā)表于 2025-3-27 19:13:06 | 只看該作者
37#
發(fā)表于 2025-3-28 01:09:20 | 只看該作者
38#
發(fā)表于 2025-3-28 05:15:07 | 只看該作者
One-Shot Medical Landmark Detectionk detector with those predictions. The effectiveness of CC2D is evaluated on a widely-used public dataset of cephalometric landmark detection, which achieves a competitive detection accuracy of 86.25.01% within 4.0 mm, comparable to the state-of-the-art semi-supervised methods using a lot more than one training image. Our code is available at ..
39#
發(fā)表于 2025-3-28 09:26:45 | 只看該作者
40#
發(fā)表于 2025-3-28 13:26:11 | 只看該作者
SSLP: Spatial Guided Self-supervised Learning on Pathological Imagesxpert annotations. However, the performance of SSL algorithms on WSIs has long lagged behind their supervised counterparts. To close this gap, in this paper, we fully explore the intrinsic characteristics of WSIs and propose SSLP: Spatial Guided Self-supervised Learning on Pathological Images. We ar
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 18:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
武清区| 汪清县| 广宗县| 宁武县| 延边| 长沙县| 华阴市| 南木林县| 高要市| 沭阳县| 临朐县| 乌拉特中旗| 邓州市| 读书| 南平市| 东港市| 峨眉山市| 临安市| 博湖县| 长垣县| 天柱县| 满洲里市| 玉山县| 富川| 枝江市| 山丹县| 江山市| 安岳县| 锦州市| 建德市| 阿拉善左旗| 隆昌县| 合水县| 阿勒泰市| 海宁市| 米易县| 屏东市| 普陀区| 平顶山市| 合阳县| 台山市|