找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020; 23rd International C Anne L. Martel,Purang Abolmaesumi,Leo Joskow

[復(fù)制鏈接]
樓主: Motion
21#
發(fā)表于 2025-3-25 04:17:47 | 只看該作者
Improved Resection Margins in Surgical Oncology Using Intraoperative Mass Spectrometry, respectively. An attention-based MIL model was adapted and applied to this dataset. RESULTS: Our models were able to predict BCC at surgical margins with AUC as high as 91%. The models were robust to changes in cautery tip but their performance decreased slightly. The models were also tested intra
22#
發(fā)表于 2025-3-25 08:04:14 | 只看該作者
An Interactive Mixed Reality Platform for Bedside Surgical Proceduresprecision of the insertions with mixed reality as well as the usability of our navigation system. The results indicate that using mixed reality improves the accuracy by over 35% and that the system ranks high based on the usability score.
23#
發(fā)表于 2025-3-25 13:09:52 | 只看該作者
24#
發(fā)表于 2025-3-25 18:49:54 | 只看該作者
25#
發(fā)表于 2025-3-25 20:58:49 | 只看該作者
A New Electromagnetic-Video Endoscope Tracking Method via Anatomical Constraints and Historically Obical data, with the experimental results showing that our proposed method fully outperforms current hybrid approaches. In particular, the tracking error was significantly reduced from (5.9?mm, 9.9.) to (3.3?mm, 8.6.).
26#
發(fā)表于 2025-3-26 02:44:43 | 只看該作者
27#
發(fā)表于 2025-3-26 08:23:03 | 只看該作者
28#
發(fā)表于 2025-3-26 10:49:59 | 只看該作者
29#
發(fā)表于 2025-3-26 13:42:30 | 只看該作者
Reinforcement Learning of Musculoskeletal Control from Functional Simulationsontrol is introduced, enabling straightforward extension to additional muscles and higher degrees of freedom. Using the biomechanical model, multiple episodes are simulated on a cluster simultaneously using the evolving neural models of the DRL being trained. Results are presented for a single-axis
30#
發(fā)表于 2025-3-26 17:31:54 | 只看該作者
MvMM-RegNet: A New Image Registration Framework Based on Multivariate Mixture Model and Neural Netwof implementing groupwise registration. We highlight the versatility of the proposed framework for various applications on multimodal cardiac images, including single-atlas-based segmentation (SAS) via pairwise registration and multi-atlas segmentation (MAS) unified by groupwise registration. We eval
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嵩明县| 萨迦县| 自治县| 新田县| 漳浦县| 富源县| 建平县| 奈曼旗| 宝鸡市| 泗水县| 石阡县| 绥芬河市| 昆山市| 福泉市| 金坛市| 台南县| 永城市| 合作市| 灵宝市| 新源县| 仙游县| 姚安县| 江阴市| 灵山县| 佛教| 江山市| 略阳县| 高邑县| 双鸭山市| 宜都市| 瑞丽市| 双柏县| 沙田区| 沈阳市| 栾川县| 湘阴县| 潼南县| 宣汉县| 迭部县| 广元市| 祁阳县|