找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mechanics and Mathematics of Fluids of the Differential Type; D. Cioranescu,V. Girault,K.R. Rajagopal Textbook 2016 Springer International

[復制鏈接]
樓主: T-Lymphocyte
21#
發(fā)表于 2025-3-25 07:05:11 | 只看該作者
Introduction,Many real fluids exhibit response characteristics that cannot be satisfactorily described by the classical Navier–Stokes fluid model and such fluids are referred to as non-Newtonian fluids.
22#
發(fā)表于 2025-3-25 11:14:55 | 只看該作者
23#
發(fā)表于 2025-3-25 15:36:13 | 只看該作者
24#
發(fā)表于 2025-3-25 19:09:53 | 只看該作者
25#
發(fā)表于 2025-3-25 21:40:52 | 只看該作者
26#
發(fā)表于 2025-3-26 02:48:51 | 只看該作者
Appendix,This last chapter is devoted to the proofs of auxiliary results, with particular emphasis on properties of simple linear transport equations that lie at the core of many complex fluids.
27#
發(fā)表于 2025-3-26 06:40:57 | 只看該作者
iety with caries risk due to age- and medication-induced salivary reduction. However, a general disease may not always have a negative influence on dental health. Therefore, a regular individual caries risk assessment is of utmost importance for clinical decision-making and tailoring of recall inter
28#
發(fā)表于 2025-3-26 09:02:00 | 只看該作者
29#
發(fā)表于 2025-3-26 16:04:18 | 只看該作者
D. Cioranescu,V. Girault,K. R. Rajagopaliety with caries risk due to age- and medication-induced salivary reduction. However, a general disease may not always have a negative influence on dental health. Therefore, a regular individual caries risk assessment is of utmost importance for clinical decision-making and tailoring of recall inter
30#
發(fā)表于 2025-3-26 20:30:36 | 只看該作者
D. Cioranescu,V. Girault,K. R. Rajagopaliety with caries risk due to age- and medication-induced salivary reduction. However, a general disease may not always have a negative influence on dental health. Therefore, a regular individual caries risk assessment is of utmost importance for clinical decision-making and tailoring of recall inter
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-20 02:55
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
靖远县| 清水河县| 偃师市| 抚州市| 蒙山县| 南开区| 阿合奇县| 车险| 富阳市| 岳池县| 德保县| 宝应县| 额尔古纳市| 天台县| 自治县| 衡东县| 安吉县| 太保市| 泰顺县| 贞丰县| 梨树县| 松阳县| 南召县| 云龙县| 南昌市| 新泰市| 宜宾县| 新邵县| 河源市| 泽普县| 炉霍县| 汕头市| 鹤峰县| 德保县| 云梦县| 石台县| 枣强县| 嘉鱼县| 勐海县| 柘城县| 明水县|