找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mechanics and Control; Proceedings of the 3 J. M. Skowronski,H. Flashner,R. S. Guttalu Conference proceedings 1991 Springer-Verlag Berlin H

[復制鏈接]
樓主: 手或腳
21#
發(fā)表于 2025-3-25 04:44:55 | 只看該作者
22#
發(fā)表于 2025-3-25 08:08:34 | 只看該作者
Avoidance control mechanics for food-chain models subject to uncertainties,of qualitative nature aimed to restrict the fluctuations of the size of the chain elements (populations, consumers, resources), hence to facilitate transition from growth (decay) to manageable population levels.
23#
發(fā)表于 2025-3-25 12:02:26 | 只看該作者
24#
發(fā)表于 2025-3-25 16:02:20 | 只看該作者
Asymptotic stability of singularly perturbed systems which have marginally stable boundary layer syr system for μ>0 sufficiently small, it is customary to require that both the reduced-order system (μ=0) and the boundary layer system are asymptotically stable. Here we relax the requirement on the boundary layer system to stability (i.e., not necessarily asymptotic stability) and show that, subjec
25#
發(fā)表于 2025-3-25 23:25:34 | 只看該作者
Robot trajectory control: Robust outer loop design using linear controller,lement an inverse dynamics control scheme that consists of a feedback linearizing control (inner loop) based on a nominal system, followed by a robust linear feedback control (outer loop) based on the uncertainty bounds. The control is robust in the sense that the system practically tracks (i.e. fol
26#
發(fā)表于 2025-3-26 03:10:06 | 只看該作者
27#
發(fā)表于 2025-3-26 07:42:32 | 只看該作者
28#
發(fā)表于 2025-3-26 10:41:30 | 只看該作者
On the existence of a solution of riccati equation and the mismatch threshold in practical stabilizn of a practically stabilizing controller for mismatched uncertain dynamical systems. It is used to compare two existing methods for stabilizing mismatched systems; one that involves measure of mismatch and the other that uses the Riccati equation. The result indicates that, if the measure of mismat
29#
發(fā)表于 2025-3-26 12:39:47 | 只看該作者
30#
發(fā)表于 2025-3-26 16:51:41 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 13:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南投县| 蚌埠市| 弥勒县| 桂平市| 峨边| 密山市| 凭祥市| 会泽县| 莆田市| 德保县| 桓台县| 宜丰县| 眉山市| 都昌县| 招远市| 和平县| 黔江区| 五大连池市| 灵丘县| 长垣县| 慈溪市| 苏尼特左旗| 德保县| 河津市| 容城县| 宜州市| 逊克县| 彩票| 仁布县| 郴州市| 运城市| 建水县| 曲沃县| 天祝| 汝州市| 鄯善县| 淳化县| 海伦市| 大埔县| 张掖市| 罗源县|