找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Measuring Uncertainty within the Theory of Evidence; Simona Salicone,Marco Prioli Book 2018 Springer International Publishing AG, part of

[復(fù)制鏈接]
樓主: ACE313
41#
發(fā)表于 2025-3-28 18:10:34 | 只看該作者
2198-7807 lternative approach using examples of uncertainty propagatioThis monograph considers the evaluation and expression of measurement uncertainty within the mathematical framework of the Theory of Evidence. With a new perspective on the metrology science, the text paves the way for innovative applicatio
42#
發(fā)表于 2025-3-28 21:38:35 | 只看該作者
43#
發(fā)表于 2025-3-29 01:21:50 | 只看該作者
A First, Preliminary Example the potentiality, versatility, and generality of the RFV approach. In this way, we hope to intrigue the readers and convince them it is worthwhile studying this new approach and going on reading this book.
44#
發(fā)表于 2025-3-29 06:12:38 | 只看該作者
45#
發(fā)表于 2025-3-29 10:39:43 | 只看該作者
The Joint Possibility Distributions. In this case, the bivariate distribution of (., .?) (i.e., their joint distribution) shall be considered to represent the information about the possible . values independently of the .?values, the possible .?values independently of the . values, and the possible .?values given the . values (i.e., .?and . relationship).
46#
發(fā)表于 2025-3-29 14:56:31 | 只看該作者
A Short Review of the Fuzzy Set Theoryan element can either belong to a set or not, and nothing in between. A model represents exactly the real system that has been modeled, that is, it is unequivocal, it contains no ambiguities, and its parameters are exactly known, with no doubts about their values or their occurrence.
47#
發(fā)表于 2025-3-29 17:51:34 | 只看該作者
48#
發(fā)表于 2025-3-29 19:46:35 | 只看該作者
49#
發(fā)表于 2025-3-30 02:40:18 | 只看該作者
50#
發(fā)表于 2025-3-30 04:48:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苗栗县| 理塘县| 靖江市| 亚东县| 新乐市| 泗阳县| 天门市| 山丹县| 贵阳市| 兴文县| 潮安县| 夏津县| 依安县| 洞头县| 杭锦旗| 建阳市| 德安县| 遂昌县| 冷水江市| 沛县| 宜良县| 安康市| 宁蒗| 海兴县| 石台县| 延安市| 惠水县| 清水河县| 嵊泗县| 安丘市| 普兰县| 德州市| 安泽县| 简阳市| 北票市| 达孜县| 枞阳县| 金寨县| 定西市| 武隆县| 石家庄市|