找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Measure and Integration; S. Kesavan (emeritus) Textbook 2019 Hindustan Book Agency 2019 and Springer Nature Singapore Pte Ltd. 2019 Lebesg

[復(fù)制鏈接]
查看: 49455|回復(fù): 45
樓主
發(fā)表于 2025-3-21 19:53:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Measure and Integration
編輯S. Kesavan (emeritus)
視頻videohttp://file.papertrans.cn/629/628056/628056.mp4
概述Discusses the Riemann integral briefly.Drives inspiration from lectures delivered by the author in several leading institutes in India.Contains interesting examples and a variety of exercises
叢書名稱Texts and Readings in Mathematics
圖書封面Titlebook: Measure and Integration;  S. Kesavan (emeritus) Textbook 2019 Hindustan Book Agency 2019 and Springer Nature Singapore Pte Ltd. 2019 Lebesg
描述.This book deals with topics on the theory of measure and integration. It starts with discussion on the Riemann integral and points out certain shortcomings, which motivate the theory of measure and the Lebesgue integral. Most of the material in this book can be covered in a one-semester?introductory course. An awareness of basic real analysis and elementary topological notions, with special emphasis on the topology of the?.n.-dimensional Euclidean space, is the pre-requisite for this book. Each chapter is provided with a variety of exercises for the students. The book is targeted to students of graduate- and advanced-graduate-level courses on the theory of measure and integration..
出版日期Textbook 2019
關(guān)鍵詞Lebesgue measure; Measurable functions; Convergence; Integration; Dierentiation; Signed measures; Product
版次1
doihttps://doi.org/10.1007/978-981-13-6678-9
isbn_ebook978-981-13-6678-9Series ISSN 2366-8717 Series E-ISSN 2366-8725
issn_series 2366-8717
copyrightHindustan Book Agency 2019 and Springer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書目名稱Measure and Integration影響因子(影響力)




書目名稱Measure and Integration影響因子(影響力)學(xué)科排名




書目名稱Measure and Integration網(wǎng)絡(luò)公開度




書目名稱Measure and Integration網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Measure and Integration被引頻次




書目名稱Measure and Integration被引頻次學(xué)科排名




書目名稱Measure and Integration年度引用




書目名稱Measure and Integration年度引用學(xué)科排名




書目名稱Measure and Integration讀者反饋




書目名稱Measure and Integration讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:08:44 | 只看該作者
Measurable functions,The notion of measurability of real-valued functions defined on a set endowed with a σ-algebra is introduced and important properties of measurable functions are studied. The construction of the Cantor function, which is a rich source of counter-examples, is described.
板凳
發(fā)表于 2025-3-22 03:19:51 | 只看該作者
地板
發(fā)表于 2025-3-22 06:13:39 | 只看該作者
Change of variable,The notion of Fréchet differentiability in ?. is introduced. The effect of the action of a diffeomorphism on the Lebesgue measure and Lebesgue integrals are studied.
5#
發(fā)表于 2025-3-22 11:29:19 | 只看該作者
6#
發(fā)表于 2025-3-22 13:16:22 | 只看該作者
https://doi.org/10.1007/978-981-13-6678-9Lebesgue measure; Measurable functions; Convergence; Integration; Dierentiation; Signed measures; Product
7#
發(fā)表于 2025-3-22 18:07:44 | 只看該作者
8#
發(fā)表于 2025-3-22 21:20:45 | 只看該作者
9#
發(fā)表于 2025-3-23 05:12:49 | 只看該作者
Hindustan Book Agency 2019 and Springer Nature Singapore Pte Ltd. 2019
10#
發(fā)表于 2025-3-23 06:43:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 21:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武夷山市| 太仆寺旗| 夹江县| 乐平市| 行唐县| 辉县市| 湾仔区| 孟州市| 临江市| 海原县| 张家界市| 嵩明县| 罗田县| 呼和浩特市| 腾冲县| 福安市| 江安县| 北宁市| 贡觉县| 林西县| 江油市| 灵武市| 大连市| 珠海市| 安阳市| 呈贡县| 尼玛县| 双城市| 宣城市| 进贤县| 肇州县| 阳新县| 曲松县| 方正县| 山丹县| 巴里| 江川县| 尼玛县| 新密市| 南岸区| 甘肃省|