找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Maximum Entropy and Bayesian Methods; Paul F. Fougère Book 1990 Kluwer Academic Publishers 1990 Maximum entropy method.Probability theory.

[復(fù)制鏈接]
樓主: damped
61#
發(fā)表于 2025-4-1 04:26:31 | 只看該作者
Maximum Entropy with Nonlinear Constraints: Physical Examples,ear-constraint problems go back unrecognised for over half of the 120-year lifetime of Maximum Entropy. The classic example is calculation of the charge density . in plasma in terms of the potential . where the energy constraint is quadratic in . In fact the Boltzmann distribution . α exp(?...) trad
62#
發(fā)表于 2025-4-1 09:35:34 | 只看該作者
Maximum Entropy Description of Plasma Equilibrium,formula relating the charge density . to the potential. On ignoring interparticle correlations this takes the form of the Boltzmann distribution, . α exp(?...). The resulting ‘Poisson-Boltzmann’ equation for the potential is studied in various geometries with differing combinations of charge species
63#
發(fā)表于 2025-4-1 14:11:01 | 只看該作者
Linear Inversion by the Maximum Entropy Method with Specific Non-Trivial Prior Information,asurements of its Fourier transform. Prior information on the charge density is used to motivate a Fourier-Bessel expansion and in addition to restrict the space of feasible reconstructions sufficiently to produce a convergent error estimate.
64#
發(fā)表于 2025-4-1 17:37:58 | 只看該作者
65#
發(fā)表于 2025-4-1 22:20:59 | 只看該作者
66#
發(fā)表于 2025-4-2 02:04:23 | 只看該作者
67#
發(fā)表于 2025-4-2 05:57:16 | 只看該作者
68#
發(fā)表于 2025-4-2 09:55:48 | 只看該作者
69#
發(fā)表于 2025-4-2 11:34:07 | 只看該作者
Carlos C. Rodriguez with organization structure and the proposed purpose of org.Organization Structures: Theory and Design, Analysis and Prescription describes how to organize people?to achieve a desired outcome. This is?accomplished?by establishing sets of rules from "real world" organization contexts. Moreover, the
70#
發(fā)表于 2025-4-2 15:21:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 07:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
枣阳市| 集安市| 五家渠市| 南郑县| 镇安县| 隆德县| 梁平县| 宜阳县| 怀远县| 仁化县| 唐山市| 犍为县| 松阳县| 宁强县| 海伦市| 拉萨市| 曲靖市| 云和县| 华阴市| 柳江县| 灯塔市| 桐梓县| 青冈县| 包头市| 鹿邑县| 嘉黎县| 定日县| 兴山县| 新沂市| 天祝| 大港区| 蚌埠市| 赤峰市| 探索| 通州市| 林甸县| 颍上县| 宝丰县| 乾安县| 泰兴市| 舟山市|