找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Matrix and Tensor Factorization Techniques for Recommender Systems; Panagiotis Symeonidis,Andreas Zioupos Book 2016 The Editor(s) (if appl

[復(fù)制鏈接]
樓主: Magnanimous
11#
發(fā)表于 2025-3-23 11:24:44 | 只看該作者
HOSVD on Tensors and Its Extensions(i.e., user–item–tag). The main factorization method that will be presented in this chapter is higher order SVD (HOSVD), which is an extended version of the Singular Value Decomposition (SVD) method. In this chapter, we will present a step-by-step implementation of HOSVD in our toy example. Then we
12#
發(fā)表于 2025-3-23 16:02:44 | 只看該作者
Experimental Evaluation on Tensor Decomposition Methodsuss the criteria that we will set for testing all algorithms and the experimental protocol we will follow. Moreover, we will discuss the metrics that we will use (i.e., Precision, Recall, root-mean-square error, etc.). Our goal is to present the main factors that influence the effectiveness of algor
13#
發(fā)表于 2025-3-23 21:57:54 | 只看該作者
en nach bestimmten Glattheitsforderungen verheftet sind. Die Bezeichnung Spline-Funktionen (Spline Functions) geht auf I. J. Schoenberg [1946]zurück. Die so bezeichneten Funktionen waren jedoch schon früher immer wieder bei verschiedenen Aufgabenstellungen benutzt worden. So kann man etwa bereits da
14#
發(fā)表于 2025-3-23 23:44:35 | 只看該作者
15#
發(fā)表于 2025-3-24 03:19:46 | 只看該作者
16#
發(fā)表于 2025-3-24 08:49:42 | 只看該作者
Related Work on Matrix Factorizationmethod is CUR decomposition, which confronts the problem of high density in factorized matrices (a problem that is faced when using the SVD method). This chapter concludes with a description of other state-of-the-art matrix decomposition techniques.
17#
發(fā)表于 2025-3-24 12:03:56 | 只看該作者
HOSVD on Tensors and Its Extensionsr methods for leveraging the quality of recommendations. Finally, we will study limitations of HOSVD and discuss in detail the problem of non-unique tensor decomposition results and how we can deal with this problem. We also discuss other problems in tensor decomposition, e.g., actualization and scalability.
18#
發(fā)表于 2025-3-24 15:51:14 | 只看該作者
Introductionnsor decomposition methods (also known as factorization methods). In this chapter, we provide some basic definitions and preliminary concepts on dimensionality reduction methods of matrices and tensors. Gradient descent and alternating least squares methods are also discussed. Finally, we present the book outline and the goals of each chapter.
19#
發(fā)表于 2025-3-24 19:55:31 | 只看該作者
20#
發(fā)表于 2025-3-25 00:30:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南丹县| 洛浦县| 和林格尔县| 盐源县| 墨脱县| 宁安市| 金川县| 通山县| 苍山县| 广德县| 苏尼特左旗| 合川市| 招远市| 岱山县| 额尔古纳市| 泗洪县| 堆龙德庆县| 炉霍县| 阳谷县| 秀山| 修武县| 禹州市| 侯马市| 渭源县| 汉川市| 前郭尔| 兰考县| 湘西| 都昌县| 赤城县| 旺苍县| 乌拉特后旗| 鲁山县| 乌恰县| 开原市| 北流市| 吉木萨尔县| 随州市| 鄱阳县| 巴南区| 临夏市|