找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Matrix Convolution Operators on Groups; Cho-Ho Chu Book 2008 Springer-Verlag Berlin Heidelberg 2008 Harmonic function.Jordan algebra.Matri

[復制鏈接]
樓主: Gram114
21#
發(fā)表于 2025-3-25 07:20:09 | 只看該作者
22#
發(fā)表于 2025-3-25 09:42:15 | 只看該作者
aken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its978-1-4899-2595-4978-1-4899-2593-0
23#
發(fā)表于 2025-3-25 15:17:31 | 只看該作者
in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its
24#
發(fā)表于 2025-3-25 17:21:46 | 只看該作者
25#
發(fā)表于 2025-3-25 21:08:27 | 只看該作者
y be improved in particular for less "nasty" problems..Finally, it is discussed how such derivative — free curve — tracing methods may be used to deal with bifurcation points caused by an index jump in the sense of Crandall — Rabinowitz [11]. Instead of using a local perturbation [15] in the sense o
26#
發(fā)表于 2025-3-26 01:05:25 | 只看該作者
27#
發(fā)表于 2025-3-26 06:31:26 | 只看該作者
0075-8434 and applications to harmonic functions on Lie groups and Riemannian symmetric spaces are discussed. An interesting feature is the presence of Jordan algebraic structures in matrix-harmonic functions..978-3-540-69797-8978-3-540-69798-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
28#
發(fā)表于 2025-3-26 08:47:22 | 只看該作者
29#
發(fā)表于 2025-3-26 14:54:30 | 只看該作者
30#
發(fā)表于 2025-3-26 19:47:38 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
建平县| 烟台市| 张北县| 冷水江市| 德庆县| 石首市| 苏尼特左旗| 普洱| 浦东新区| 高要市| 启东市| 顺平县| 香格里拉县| 布尔津县| 桂东县| 利川市| 宕昌县| 忻城县| 汽车| 防城港市| 莎车县| 宁海县| 定日县| 西乌| 新余市| 班戈县| 高碑店市| 黔西县| 乡宁县| 正蓝旗| 石首市| 胶南市| 美姑县| 类乌齐县| 古交市| 定州市| 张家港市| 陕西省| 大悟县| 南漳县| 桂东县|