找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematikbezogene Angst; Eine Interviewstudie Frances Beier Book 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 201

[復(fù)制鏈接]
樓主: Covenant
31#
發(fā)表于 2025-3-26 22:02:57 | 只看該作者
Frances BeierW) implementation. NWOW embrace a broad set of organizational practices, ranging from spatial and temporal flexibility to self-management. Beyond such set of (somehow traditional) work practices, the singularity of NWOW seems to lie in its governance epitome, valuing a peculiar philosophy of managem
32#
發(fā)表于 2025-3-27 02:54:29 | 只看該作者
33#
發(fā)表于 2025-3-27 09:13:15 | 只看該作者
Frances Beierywood and of the leading tech companies.Explores topics such.The global rise of streaming and social media platforms, and the influence of tech giants in increasingly more sectors of the economy including the media industry, have disrupted the .status quo.?of the global media competitive landscape.
34#
發(fā)表于 2025-3-27 10:59:34 | 只看該作者
35#
發(fā)表于 2025-3-27 13:56:42 | 只看該作者
matter. Each of these elements makes a significant contribution to the act of educating, and each can be the source of significant distortions, especially when we forget we are educating persons. The notion of educating persons sets certain constraints and makes certain demands. Some of these will
36#
發(fā)表于 2025-3-27 21:16:08 | 只看該作者
37#
發(fā)表于 2025-3-27 22:16:06 | 只看該作者
Frances Beierhis or her life expectations, fundamental values, sense of direction, and religious/nonreligious convictions. The place par excellence to acquire the communicative competence to deal peacefully with norms, values, and meaning is the school, this “microcosm” in our complex and pluralized societies. I
38#
發(fā)表于 2025-3-28 05:44:13 | 只看該作者
39#
發(fā)表于 2025-3-28 09:16:24 | 只看該作者
40#
發(fā)表于 2025-3-28 11:01:05 | 只看該作者
Bezug zur Mathematiksitiven sowie negativen Emotionen in mathematischen Kontexten vorgestellt (Kap. 3.1), um an das vorangegangene Kapitel anzuschlie?en. Die Erkl?rung, weshalb die Disziplin der Mathematik als Forschungsgegenstand gew?hlt wurde, wird in Kap. 3.3 erl?utert. Anhand einer Studie von Haag und G?tz (2012) w
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 20:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
那坡县| 宾川县| 阳春市| 普安县| 方城县| 许昌县| 延吉市| 湖口县| 宁城县| 永德县| 西峡县| 澄城县| 北碚区| 宝清县| 南和县| 新乡市| 铜山县| 会泽县| 宁阳县| 郑州市| 广德县| 双江| 定兴县| 宿迁市| 和政县| 兴宁市| 府谷县| 佳木斯市| 双辽市| 新邵县| 新乐市| 上高县| 安顺市| 斗六市| 调兵山市| 垫江县| 神农架林区| 诸城市| 黔西县| 墨脱县| 宣武区|