找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematik für das Bachelorstudium I; Grundlagen und Grund Matthias Plaue,Mike Scherfner Textbook 2019Latest edition Springer-Verlag GmbH D

[復(fù)制鏈接]
樓主: Definite
31#
發(fā)表于 2025-3-27 00:25:24 | 只看該作者
Matrizengs werden wir weitere nützliche Dinge sehen, denn Matrizen sind direkt mit den zuvor behandelten linearen Abbildungen verbunden, und jede solche Abbildung l?sst sich – bezüglich fest gew?hlter Basen – eindeutig als ein solches Schema mit festen Eintr?gen darstellen.
32#
發(fā)表于 2025-3-27 02:01:06 | 只看該作者
33#
發(fā)表于 2025-3-27 09:19:57 | 只看該作者
Koordinatenabbildung und BasiswechselAuf den ersten Blick scheint es die beste Idee zu sein, stets immer die Standardbasis zu w?hlen, weil diese eine besonders einfache Gestalt hat. Allerdings l?sst sich daraus keineswegs folgern, dass dann auch die darstellende Matrix besonders einfach ist.
34#
發(fā)表于 2025-3-27 10:12:38 | 只看該作者
35#
發(fā)表于 2025-3-27 13:59:38 | 只看該作者
https://doi.org/10.1007/978-3-662-58352-4Analysis; Determinanten; Eigenvektoren; Eigenwert; Koordinaten; Lineare Unabh?ngigkeit; Matrix; Matrizen; Ra
36#
發(fā)表于 2025-3-27 18:22:54 | 只看該作者
Vektorr?umeDie lineare Algebra wird ben?tigt, um eine Vielzahl von Problemen und interessanten Objekten in der Mathematik zu behandeln. Hierzu geh?ren u. a.
37#
發(fā)表于 2025-3-27 22:07:15 | 只看該作者
Die DeterminanteDer nun zu behandelnde Begriff der Determinante birgt mannigfache Anwendungen und insbesondere Vereinfachungen. Mit Determinanten k?nnen wir u. a. Volumina berechnen, einfach über die lineare Unabh?ngigkeit von Vektoren entscheiden, Informationen über den L?sungsraum linearer Gleichungssysteme gewinnen und vieles mehr.
38#
發(fā)表于 2025-3-28 05:30:40 | 只看該作者
39#
發(fā)表于 2025-3-28 09:50:13 | 只看該作者
DiagonalisierungDieses Kapitel ist nur die logische Konsequenz des vorhergehenden. Wir lernten dort, wie wir darstellende Matrizen bezüglich einer Basis in eine solche bezüglich einer anderen Basis transformieren. Es bleibt die Frage offen, ob es Basen gibt, in denen die darstellende Matrix besonders einfach ist.
40#
發(fā)表于 2025-3-28 10:49:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
呼和浩特市| 黄梅县| 施甸县| 余庆县| 双城市| 渝中区| 永丰县| 吴桥县| 麟游县| 将乐县| 富锦市| 油尖旺区| 锡林浩特市| 霍邱县| 民权县| 葫芦岛市| 清苑县| 剑河县| 永和县| 宾川县| 辽阳市| 修文县| 民丰县| 永安市| 惠州市| 共和县| 辛集市| 嘉祥县| 襄樊市| 双流县| 商洛市| 漾濞| 黄浦区| 黑龙江省| 花莲市| 龙陵县| 黄平县| 新昌县| 江油市| 吉木萨尔县| 桂阳县|