找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematik 2; Geschrieben für Phys Klaus J?nich Textbook 20021st edition Springer-Verlag Berlin Heidelberg 2002 Ableitung.Analysis.Cartan-K

[復(fù)制鏈接]
樓主: Precise
51#
發(fā)表于 2025-3-30 11:23:11 | 只看該作者
Klaus J?nichird edition) retains the topical structure familiar from its predecessors but has been substantially rewritten, edited and updated to account for the significant body of results that have emerged in the twenty-first century—including developments in:.the existence and uniqueness of solutions;.impact
52#
發(fā)表于 2025-3-30 15:28:41 | 只看該作者
53#
發(fā)表于 2025-3-30 16:32:47 | 只看該作者
Klaus J?nichity of the potentials. For the dynamics, the formulation is given in term of differential measures in order to deal with the non continuity of the velocities that may occur in the solutions..This work therefore owes much to the theories and the numerical scheme developed by J. J. Moreau and M. Jean.
54#
發(fā)表于 2025-3-30 21:52:48 | 只看該作者
Klaus J?nich a contraction. The contraction principle is used to establish the well-posedness of the discrete formulation, to prove the convergence of the algorithm, and to obtain an estimate of the convergence rate. An example shows the sub-optimality of the obtained limit value of the friction coefficient.
55#
發(fā)表于 2025-3-31 03:46:51 | 只看該作者
56#
發(fā)表于 2025-3-31 08:36:09 | 只看該作者
Klaus J?nichity of the potentials. For the dynamics, the formulation is given in term of differential measures in order to deal with the non continuity of the velocities that may occur in the solutions..This work therefore owes much to the theories and the numerical scheme developed by J. J. Moreau and M. Jean.
57#
發(fā)表于 2025-3-31 11:46:23 | 只看該作者
58#
發(fā)表于 2025-3-31 16:06:49 | 只看該作者
59#
發(fā)表于 2025-3-31 17:44:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 17:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湄潭县| 伊金霍洛旗| 衡水市| 临邑县| 卢氏县| 阳新县| 合肥市| 玛沁县| 柳州市| 颍上县| 双鸭山市| 西吉县| 安顺市| 巍山| 盐山县| 亚东县| 成都市| 常山县| 噶尔县| 泰州市| 长乐市| 梅河口市| 宕昌县| 平舆县| 民县| 金寨县| 本溪| 黄山市| 天峨县| 东台市| 广元市| 卢氏县| 浦东新区| 丘北县| 龙口市| 通渭县| 娱乐| 寻乌县| 韶山市| 建湖县| 漳平市|