找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics of Program Construction; 14th International C Ekaterina Komendantskaya Conference proceedings 2022 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: Curator
21#
發(fā)表于 2025-3-25 04:40:29 | 只看該作者
22#
發(fā)表于 2025-3-25 08:23:54 | 只看該作者
,Folding over?Neural Networks,n scheme patterns. In turn, we promote a coherent implementation of neural networks that delineates between their structure and semantics, allowing for compositionality in both how they are built and how they are trained.
23#
發(fā)表于 2025-3-25 13:01:33 | 只看該作者
24#
發(fā)表于 2025-3-25 17:58:26 | 只看該作者
25#
發(fā)表于 2025-3-25 23:42:08 | 只看該作者
26#
發(fā)表于 2025-3-26 01:41:26 | 只看該作者
27#
發(fā)表于 2025-3-26 05:35:34 | 只看該作者
Subtyping Without Reduction,ticle, we show how operations on a subtype can be represented in a more efficient manner that exhibits no reduction behaviour. We present the general form of the technique in Cubical Agda by exploiting its support by higher-inductive types, and demonstrate the practical use of the technique with a number of examples.
28#
發(fā)表于 2025-3-26 12:32:00 | 只看該作者
Calculating Datastructures,aws relating types and arithmetic. Although these calculations do not generally produce novel datastructures they do give insight into how certain datastructures arise and how different implementations are related.
29#
發(fā)表于 2025-3-26 13:26:57 | 只看該作者
,Breadth-First Traversal via?Staging,Depth-first effectful traversal of a tree is straightforward to define compositionally, since it precisely follows the shape of the data. What about breadth-first effectful traversal? An indirect route is to factorize the data structure into shape and contents, traverse the contents, then rebuild th
30#
發(fā)表于 2025-3-26 17:05:01 | 只看該作者
Subtyping Without Reduction, gives no control over when the reduction of subtyping proofs takes place, which can significantly impact the performance of type-checking. In this article, we show how operations on a subtype can be represented in a more efficient manner that exhibits no reduction behaviour. We present the general
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 14:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉化市| 新建县| 浏阳市| 漳平市| 通山县| 高青县| 沂南县| 临沧市| 南充市| 岳阳县| 崇文区| 凤庆县| 张家口市| 正定县| 宣恩县| 浪卡子县| 封丘县| 达孜县| 固安县| 滨州市| 布拖县| 长阳| 云安县| 堆龙德庆县| 平泉县| 太和县| 龙山县| 乐业县| 佛山市| 丁青县| 宁强县| 南和县| 农安县| 江都市| 无为县| 本溪市| 冀州市| 哈巴河县| 土默特左旗| 哈巴河县| 出国|