找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics of Climate Modeling; Valentin P. Dymnikov,Aleksander N. Filatov Book 1997 Birkh?user Boston 1997 Mathematica.atmosphere.climat

[復(fù)制鏈接]
樓主: 出租
11#
發(fā)表于 2025-3-23 11:08:29 | 只看該作者
978-1-4612-8674-5Birkh?user Boston 1997
12#
發(fā)表于 2025-3-23 16:56:22 | 只看該作者
13#
發(fā)表于 2025-3-23 18:29:07 | 只看該作者
14#
發(fā)表于 2025-3-24 01:10:35 | 只看該作者
15#
發(fā)表于 2025-3-24 04:53:47 | 只看該作者
16#
發(fā)表于 2025-3-24 09:44:31 | 只看該作者
Numerical Study of Structure of Attractor Generated by Barotropic Equations on Sphere,With the existence theorems concerning an attractor generated by a system of barotropic equations on sphere and those concerning an inertial manifold and an invariant measure at our disposal, we, unfortunately, have nothing to say at present about the structure of the attractor. We can only estimate the attractor dimension.
17#
發(fā)表于 2025-3-24 11:35:02 | 只看該作者
Two-Layer Baroclinic Model,Let us consider the baroclinic atmosphere equations in .-system of coordinates:.or if we set ...
18#
發(fā)表于 2025-3-24 15:14:47 | 只看該作者
Regimes of Atmosphere Circulation,The term “regime of atmosphere circulation” has long been in use by the meteorologists. It will suffice to remember the classification of the circulation regimes given by Dzerdzeevsky [23], Girs and Vangengeim [67]. The concepts of the circulation regimes such as blocking and zonal flow are well known [20].
19#
發(fā)表于 2025-3-24 20:06:50 | 只看該作者
Dynamical Systems. Attractors, Invariant Measures,r such their properties which are typical of certain sufficiently wide classes of the models. From our standpoint the climate model is a system of partial differential equations with the corresponding boundary and initial conditions.
20#
發(fā)表于 2025-3-25 02:06:52 | 只看該作者
Discretization of Systems Possessing Attractors,ystems. In connection with this the question emerges: what properties of the initial system are kept under such approximation. Since we consider the systems possessing attractors, the question must be answered first: what happens with attractors of such systems under above time-space discretization.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浦江县| 冕宁县| 新龙县| 阳山县| 张家港市| 新野县| 广昌县| 梅河口市| 房山区| 吉木萨尔县| 咸阳市| 合江县| 沭阳县| 汕头市| 建昌县| 资中县| 敦化市| 云龙县| 林州市| 昌吉市| 成武县| 景宁| 阳曲县| 汝城县| 大港区| 敦化市| 丰城市| 博客| 梅州市| 合水县| 体育| 佛教| 宕昌县| 清苑县| 大丰市| 文登市| 三亚市| 贵德县| 韩城市| 屯昌县| 西峡县|