找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics and Its History; John Stillwell Textbook 20022nd edition Springer-Verlag New York 2002 algebraic number theory.elliptic functi

[復(fù)制鏈接]
樓主: Corticosteroids
11#
發(fā)表于 2025-3-23 13:04:41 | 只看該作者
Projective Geometry,twentieth-century mathematics texts. Figure 8.1 shows a fifteenth-century artistic example from Wright (1983), p. 41, alongside a twentieth-century mathematical example from the exposé of Grünbaum (1985).]
12#
發(fā)表于 2025-3-23 16:14:24 | 只看該作者
13#
發(fā)表于 2025-3-23 18:44:42 | 只看該作者
Complex Numbers in Algebra, (Section 6.7), classification of cubic curves (Section 8.4), branch points (Section 10.5), genus (Section 11.3), and behavior of elliptic functions (Sections 11.6 and 12.6)—are clarified by the introduction of complex numbers.
14#
發(fā)表于 2025-3-23 23:56:48 | 只看該作者
John StillwellStilwell‘s style and exposition are unique.New examples on Chinese and Indian number theory
15#
發(fā)表于 2025-3-24 03:15:56 | 只看該作者
16#
發(fā)表于 2025-3-24 08:05:44 | 只看該作者
Springer-Verlag New York 2002
17#
發(fā)表于 2025-3-24 14:22:48 | 只看該作者
18#
發(fā)表于 2025-3-24 14:55:19 | 只看該作者
The Theorem of Pythagoras,If there is one theorem that is known to all mathematically educated people, it is surely the theorem of Pythagoras. It will be recalled as a property of right-angled triangles: the square of the hypotenuse equals the sum of the squares of the other two sides (Figure 1.1).
19#
發(fā)表于 2025-3-24 19:33:56 | 只看該作者
20#
發(fā)表于 2025-3-25 01:19:57 | 只看該作者
Analytic Geometry,The basic idea of analytic geometry is the representation of curves by equations, but this is not the whole idea. If it were, then the Greeks would be considered the first analytic geometers.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
抚松县| 万安县| 巩留县| 河曲县| 宁陵县| 雷山县| 承德县| 抚顺县| 翁牛特旗| 灵石县| 黄大仙区| 黄陵县| 仁怀市| 蒲城县| 宜兰县| 南部县| 莱芜市| 海兴县| 通许县| 远安县| 碌曲县| 封丘县| 饶阳县| 开阳县| 忻州市| 潜山县| 忻州市| 锡林郭勒盟| 灯塔市| 兴业县| 军事| 全椒县| 常德市| 武山县| 武义县| 民丰县| 怀远县| 武定县| 东城区| 绍兴县| 新营市|