找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical and Numerical Foundations of Turbulence Models and Applications; Tomás Chacón Rebollo,Roger Lewandowski Book 2014 Springer Sc

[復(fù)制鏈接]
樓主: 呻吟
41#
發(fā)表于 2025-3-28 15:52:51 | 只看該作者
42#
發(fā)表于 2025-3-28 21:15:14 | 只看該作者
43#
發(fā)表于 2025-3-29 00:07:12 | 只看該作者
Finite Element Approximation of Evolution Smagorinsky Model,ady case, we shall consider this model as intrinsically discrete. We consider a semi-implicit discretization in time by the Euler method as a model time discretization. We analyze stability, error, and well-posedness for all flow regimes and study the asymptotic error balance.
44#
發(fā)表于 2025-3-29 03:08:48 | 只看該作者
A Projection-Based Variational Multiscale Model,ge of small resolved scales. We prove stability and perform a convergence analysis to the Navier–Stokes equations, including wall laws, in steady and unsteady regimes. We analyze the asymptotic convergence balance. We finally prove that this method attempts optimal accuracy for smooth flows.
45#
發(fā)表于 2025-3-29 10:13:07 | 只看該作者
Numerical Approximation of NS-TKE Model,duction term so as a smooth friction boundary condition for the TKE. In the steady case we prove stability and strong convergence to a weak solution. In the evolution case we consider a semi-implicit Euler scheme that decouples velocity and TKE. We prove the stability of the scheme and weak converge
46#
發(fā)表于 2025-3-29 11:36:17 | 只看該作者
47#
發(fā)表于 2025-3-29 18:52:19 | 只看該作者
48#
發(fā)表于 2025-3-29 21:23:29 | 只看該作者
Numerical Approximation of NS-TKE Model,In the evolution case we consider a semi-implicit Euler scheme that decouples velocity and TKE. We prove the stability of the scheme and weak convergence to a limit problem in which the TKE only verifies a variational inequality.
49#
發(fā)表于 2025-3-30 02:15:38 | 只看該作者
50#
發(fā)表于 2025-3-30 04:20:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
道真| 高邑县| 张家港市| 德化县| 阿尔山市| 沁阳市| 清水河县| 五家渠市| 科尔| 梁山县| 温州市| 曲松县| 城固县| 昌乐县| 密云县| 黄石市| 普兰县| 定兴县| 滨州市| 江川县| 栾城县| 池州市| 威远县| 青阳县| 连平县| 皮山县| 鲁山县| 衡阳县| 双柏县| 大同县| 武夷山市| 界首市| 德格县| 民丰县| 湘阴县| 淮北市| 无锡市| 沭阳县| 开鲁县| 曲阳县| 四会市|