找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Problems in Data Science; Theoretical and Prac Li M. Chen,Zhixun Su,Bo Jiang Book 2015 Springer International Publishing Switz

[復制鏈接]
查看: 10321|回復: 50
樓主
發(fā)表于 2025-3-21 19:30:10 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Mathematical Problems in Data Science
副標題Theoretical and Prac
編輯Li M. Chen,Zhixun Su,Bo Jiang
視頻videohttp://file.papertrans.cn/627/626534/626534.mp4
概述Explains the most current methods for solving cutting edge problems in data science and big data.Provides problem solving techniques and case studies.Covers a wide range of mathematical problems in da
圖書封面Titlebook: Mathematical Problems in Data Science; Theoretical and Prac Li M. Chen,Zhixun Su,Bo Jiang Book 2015 Springer International Publishing Switz
描述.This book describes current problems in data science and Big Data. Key topics are data classification, Graph Cut, the Laplacian Matrix, Google Page Rank, efficient algorithms, hardness of problems, different types of?big data, geometric data structures, topological data processing, and various learning methods.? For unsolved problems such as incomplete data relation and reconstruction, the book includes possible solutions and both statistical and computational methods for data analysis. Initial chapters focus on?exploring the properties of incomplete data sets and partial-connectedness among data points or data sets. Discussions also cover the completion problem of Netflix matrix; machine learning method on massive data sets; image segmentation and video search. This book introduces software tools for data science and Big Data such MapReduce, Hadoop, and Spark.?? ..This book contains three parts.? The first part explores the fundamental tools of data science. It includes basic graph theoretical methods, statistical and AI methods for massive data sets. In second part, chapters focus on the procedural treatment of data science problems including machine learning methods, mathematic
出版日期Book 2015
關鍵詞Data science; Big data; Cloud data computing; Data modeling; Data relations; Data connectivity; Geometric
版次1
doihttps://doi.org/10.1007/978-3-319-25127-1
isbn_softcover978-3-319-79739-7
isbn_ebook978-3-319-25127-1
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Mathematical Problems in Data Science影響因子(影響力)




書目名稱Mathematical Problems in Data Science影響因子(影響力)學科排名




書目名稱Mathematical Problems in Data Science網絡公開度




書目名稱Mathematical Problems in Data Science網絡公開度學科排名




書目名稱Mathematical Problems in Data Science被引頻次




書目名稱Mathematical Problems in Data Science被引頻次學科排名




書目名稱Mathematical Problems in Data Science年度引用




書目名稱Mathematical Problems in Data Science年度引用學科排名




書目名稱Mathematical Problems in Data Science讀者反饋




書目名稱Mathematical Problems in Data Science讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:26:45 | 只看該作者
Introduction: Data Science and BigData Computinga. Today, we are supposed to find rules and properties in the data set, even among different data sets. In this chapter, we will explain data science and its relationship to BigData, cloud computing and data mining. We also discuss current research problems in data science and provide concerns relating to a baseline of the data science industry.
板凳
發(fā)表于 2025-3-22 03:24:01 | 只看該作者
地板
發(fā)表于 2025-3-22 07:10:20 | 只看該作者
Li M. Chen,Zhixun Su,Bo JiangExplains the most current methods for solving cutting edge problems in data science and big data.Provides problem solving techniques and case studies.Covers a wide range of mathematical problems in da
5#
發(fā)表于 2025-3-22 11:26:34 | 只看該作者
6#
發(fā)表于 2025-3-22 15:56:53 | 只看該作者
7#
發(fā)表于 2025-3-22 17:13:40 | 只看該作者
8#
發(fā)表于 2025-3-22 21:51:57 | 只看該作者
Monte Carlo Methods and Their Applications in Big Data Analysis estimation of sum, Monte Carlo linear solver, image recovery, matrix multiplication, and low-rank approximation are shown as case studies to demonstrate the effectiveness of Monte Carlo methods in data analysis.
9#
發(fā)表于 2025-3-23 01:49:53 | 只看該作者
10#
發(fā)表于 2025-3-23 06:02:46 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-25 10:04
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
辽宁省| 高唐县| 芦溪县| 康定县| 安溪县| 沧州市| 河北区| 通渭县| 大悟县| 台北市| 通许县| 长白| 红安县| 丰都县| 叙永县| 大埔区| 许昌县| 阿拉善盟| 崇信县| 华容县| 荔浦县| 青铜峡市| 广东省| 红安县| 龙海市| 哈尔滨市| 大英县| 札达县| 九龙城区| 通州市| 云浮市| 霞浦县| 宜城市| 多伦县| 平阳县| 巩义市| 旌德县| 宁明县| 安庆市| 商丘市| 泰顺县|