找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Modeling and Supercomputer Technologies; 22nd International C Dmitry Balandin,Konstantin Barkalov,Iosif Meyerov Conference pro

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-27 00:37:01 | 只看該作者
Investigation of?a?Queueing System with?Two Classes of?Jobs, Bernoulli Feedback, and?a?Threshold Swi job classes have different arrival intensities and different batch size distributions. Service times and setup times are random with exponential probability distributions. A control algorithm is parametrized by a threshold?.: first-class jobs are taken for service only if the number of the second-c
32#
發(fā)表于 2025-3-27 01:14:04 | 只看該作者
33#
發(fā)表于 2025-3-27 06:55:51 | 只看該作者
34#
發(fā)表于 2025-3-27 10:29:00 | 只看該作者
35#
發(fā)表于 2025-3-27 14:52:19 | 只看該作者
Global Optimization Method Based on?the?Survival of?the?Fittest Algorithmhods do not guarantee that the generated sequence of test points converges to a global extremum in any sense. The purpose of this paper is to construct and prove convergence of a new evolutionary global optimization algorithm. This algorithm is created on the base of the Survival of the Fittest algo
36#
發(fā)表于 2025-3-27 20:33:40 | 只看該作者
37#
發(fā)表于 2025-3-27 23:01:51 | 只看該作者
Conference proceedings 2022 2022, held in?Nizhny Novgorod, Russia, in November 2022.?.The 20 full papers and 5 short papers presented in the volume were thoroughly reviewed and selected from the 48 submissions. They are organized in topical secions on ?computational methods for mathematical models analysis; computation in opt
38#
發(fā)表于 2025-3-28 03:48:18 | 只看該作者
39#
發(fā)表于 2025-3-28 06:43:21 | 只看該作者
40#
發(fā)表于 2025-3-28 11:45:38 | 只看該作者
Nonintegrability of?the?Problem of?Motion of?an?Ellipsoidal Body with?a?Fixed Point in?a?Flow of?Parxistence in the considered problem of an additional analytic first integral independent of the energy integral. We proved that the obtained necessary conditions are not fulfilled for the rigid body with a mass distribution corresponding to the classical Kovalevskaya integrable case in the problem of motion of a heavy rigid body with a fixed point.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 18:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岱山县| 大石桥市| 伊金霍洛旗| 都江堰市| 思南县| 汤原县| 唐河县| 和政县| 定襄县| 新干县| 高要市| 丰县| 武川县| 潞城市| 苗栗县| 无棣县| 五台县| 河津市| 泽州县| 淮北市| 且末县| 洛浦县| 会东县| 东兰县| 蓝山县| 菏泽市| 阳信县| 常宁市| 白河县| 察雅县| 崇礼县| 南岸区| 青冈县| 桓台县| 江都市| 绥滨县| 库伦旗| 手机| 南靖县| 肃南| 宜兰县|