找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Approaches to Biological Systems; Networks, Oscillatio Toru Ohira,Tohru Uzawa Book 2015 Springer Japan 2015 Biological network

[復(fù)制鏈接]
樓主: 誤解
11#
發(fā)表于 2025-3-23 10:08:12 | 只看該作者
Chases and Escapes: From Singles to Groups, nearest escapee, while each escapee steps away from its nearest chaser. Although there are no communications within each group, simulations show segregations of chasers and targets. Two order parameters are introduced to characterize the chasing and escaping in group. Further developments are reviewed to extend our basic model.
12#
發(fā)表于 2025-3-23 14:20:59 | 只看該作者
Human Balance Control: Dead Zones, Intermittency, and Micro-chaos,orrective movements made by humans to maintain balance are small amplitude, intermittent and ballistic. Small-amplitude, complex oscillations (“micro-chaos”) frequently arise in industrial settings when a time-delayed digital processor attempts to stabilize an unstable equilibrium. Taken together, t
13#
發(fā)表于 2025-3-23 19:24:14 | 只看該作者
Dynamical Robustness of Complex Biological Networks, a challenging issue to understand robustness of biological interaction networks from a viewpoint of dynamical systems. In this chapter, we introduce the concept of dynamical robustness in complex networks and demonstrate its application to biological networks. First, we introduce the framework for
14#
發(fā)表于 2025-3-23 23:56:28 | 只看該作者
15#
發(fā)表于 2025-3-24 04:16:11 | 只看該作者
Entrainment Limit of Weakly Forced Nonlinear Oscillators,of injection locking to date, it has been an open problem to establish an ideally efficient injection locking in a given oscillator. In this chapter, I identify a universal mechanism governing the entrainment limit under weak forcings, which enables us to understand how and why the ideal injection l
16#
發(fā)表于 2025-3-24 08:48:21 | 只看該作者
A Universal Mechanism of Determining the Robustness of Evolving Systems, emerges, or at least persists, under successive introductions of new elements. To have a general and simple understanding for the basic condition to let such systems grow, we investigate a simple mathematical process. It is found that the model system either grows infinitely large or stays finite d
17#
發(fā)表于 2025-3-24 12:06:47 | 只看該作者
18#
發(fā)表于 2025-3-24 16:12:34 | 只看該作者
Chases and Escapes: From Singles to Groups,pical “one-to-one” chase and escape. Recently, we have proposed a simple model where we extend the chaser and escape to a case a group of particles chasing another group, called “group chase and escape.” This extension connects the traditional problem with current interests on collective motions of
19#
發(fā)表于 2025-3-24 21:07:40 | 只看該作者
20#
發(fā)表于 2025-3-25 00:34:00 | 只看該作者
Gouhei Tanaka,Kai Morino,Kazuyuki Aiharantroductory book is not only for thenovice reader, but for experts in a variety of areas includingparallel computing, neural network computing, computer science,communications, graph theory, computer aided design for VLSI circuits,molecular biology, management science, and operations research. Thego
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上栗县| 苍山县| 赫章县| 乌兰县| 花莲县| 卢湾区| 蒲城县| 上蔡县| 友谊县| 正定县| 涟源市| 浦江县| 当雄县| 宜城市| 山丹县| 吉安市| 雅江县| 浙江省| 大关县| 高密市| 博乐市| 大田县| 江川县| 思茅市| 四子王旗| 德钦县| 临泽县| 荣成市| 双鸭山市| 奇台县| 沐川县| 万年县| 安顺市| 阿鲁科尔沁旗| 泰宁县| 广州市| 茂名市| 枝江市| 安宁市| 石泉县| 彰化市|