找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Analysis and Computing; ICMAC 2019, Kalavak R. N. Mohapatra,S. Yugesh,C. Kalaivani Conference proceedings 2021 The Editor(s)

[復(fù)制鏈接]
樓主: 劉興旺
31#
發(fā)表于 2025-3-26 22:36:53 | 只看該作者
32#
發(fā)表于 2025-3-27 04:56:43 | 只看該作者
,Bifurcation Analysis and Chaos Control for a Discrete Fractional-Order Prey–Predator System, with the stability of the system are discussed. The chaotic behavior of the system is analyzed with the bifurcation theory to prove the existence of periodic doubling and Neimark–Sacker bifurcations. The control strategy are employed to the system to study the containment of the chaos and simulations are performed to support the results.
33#
發(fā)表于 2025-3-27 08:10:17 | 只看該作者
Conference proceedings 2021lems stated in a qualitative manner. This book aims at disseminating recent advances in areas of mathematical analysis, soft computing, approximation and optimization through original research articles and expository survey papers. This book will be of value to research scholars, professors, and industrialists working in these areas..
34#
發(fā)表于 2025-3-27 12:20:06 | 只看該作者
35#
發(fā)表于 2025-3-27 17:03:12 | 只看該作者
36#
發(fā)表于 2025-3-27 19:37:05 | 只看該作者
Conference proceedings 2021i Sivasubramaniya Nadar College of Engineering, Chennai, India, from 23–24?December 2019.?Having found its applications in game theory, economics, and operations research, mathematical analysis plays an important role in analyzing models of physical systems and provides a sound logical base for prob
37#
發(fā)表于 2025-3-28 00:50:10 | 只看該作者
38#
發(fā)表于 2025-3-28 05:53:37 | 只看該作者
39#
發(fā)表于 2025-3-28 08:16:30 | 只看該作者
All Finite Topological Spaces are Weakly Reconstructible,. then . is homeomorphic to .. A topological space . is said to be weakly reconstructible if it is reconstructible from its multi-deck. It is shown that all finite topological spaces are weakly reconstructible.
40#
發(fā)表于 2025-3-28 11:18:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河北省| 土默特右旗| 山丹县| 平顶山市| 华阴市| 临海市| 新巴尔虎右旗| 赣榆县| 天水市| 开阳县| 姚安县| 丽江市| 顺昌县| 奎屯市| 宣城市| 大厂| 清新县| 泰宁县| 同心县| 漯河市| 改则县| 伊春市| 韶关市| 金平| 安溪县| 阜宁县| 岑溪市| 甘泉县| 崇文区| 西乌珠穆沁旗| 天峻县| 大埔区| 正镶白旗| 平潭县| 莲花县| 肥东县| 长岛县| 新泰市| 郴州市| 林州市| 长宁县|