找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Materials Data Science; Introduction to Data Stefan Sandfeld Textbook 2024 The Materials Research Society 2024 Data mining.data science.dat

[復制鏈接]
查看: 33307|回復: 53
樓主
發(fā)表于 2025-3-21 18:44:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Materials Data Science
副標題Introduction to Data
編輯Stefan Sandfeld
視頻videohttp://file.papertrans.cn/626/625766/625766.mp4
概述Introduces machine learning/deep learning methods in detail based on examples and data from materials science.Covers all theoretical foundations in an accessible manner, tailored to materials scientis
叢書名稱The Materials Research Society Series
圖書封面Titlebook: Materials Data Science; Introduction to Data Stefan Sandfeld Textbook 2024 The Materials Research Society 2024 Data mining.data science.dat
描述.This text covers all of the data science, machine learning, and deep learning topics relevant to materials science and engineering, accompanied by numerous examples and applications. Almost all methods and algorithms introduced? are implemented “from scratch” using Python and NumPy...The book starts with an introduction to statistics and probabilities, explaining important concepts such as random variables and probability distributions, Bayes’ theorem and correlations, sampling techniques, and exploratory data analysis, and puts them in the context of materials science and engineering. Therefore, it serves as a valuable primer for both undergraduate and graduate students, as well as a review for research scientists and practicing engineers. ..The second part provides an in-depth introduction of (statistical) machine learning. It begins with outlining fundamental concepts and proceeds to explore a variety of supervised learning techniques for regression and classification, including advanced methods such as kernel regression and support vector machines. The section on unsupervised learning emphasizes principal component analysis, and also covers manifold learning (t-SNE and UMAP) a
出版日期Textbook 2024
關(guān)鍵詞Data mining; data science; data-driven; machine learning; deep learning; supervised learning; unsupervised
版次1
doihttps://doi.org/10.1007/978-3-031-46565-9
isbn_softcover978-3-031-46567-3
isbn_ebook978-3-031-46565-9Series ISSN 2730-7360 Series E-ISSN 2730-7379
issn_series 2730-7360
copyrightThe Materials Research Society 2024
The information of publication is updating

書目名稱Materials Data Science影響因子(影響力)




書目名稱Materials Data Science影響因子(影響力)學科排名




書目名稱Materials Data Science網(wǎng)絡(luò)公開度




書目名稱Materials Data Science網(wǎng)絡(luò)公開度學科排名




書目名稱Materials Data Science被引頻次




書目名稱Materials Data Science被引頻次學科排名




書目名稱Materials Data Science年度引用




書目名稱Materials Data Science年度引用學科排名




書目名稱Materials Data Science讀者反饋




書目名稱Materials Data Science讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:04:58 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:25:23 | 只看該作者
地板
發(fā)表于 2025-3-22 08:37:36 | 只看該作者
5#
發(fā)表于 2025-3-22 12:07:29 | 只看該作者
6#
發(fā)表于 2025-3-22 15:52:53 | 只看該作者
7#
發(fā)表于 2025-3-22 17:04:15 | 只看該作者
Stefan Sandfeld kaum rekonstruieren: Die vielen und intensiven Diskussionen, die ich in Cambridge mit ihm führen konnte, haben nicht nur einzelne meiner Argumente gepr?gt, son978-3-7908-0569-7978-3-642-51555-2Series ISSN 1431-2034
8#
發(fā)表于 2025-3-22 21:12:53 | 只看該作者
9#
發(fā)表于 2025-3-23 02:32:42 | 只看該作者
10#
發(fā)表于 2025-3-23 08:31:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 11:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
吐鲁番市| 巨野县| 化隆| 伊金霍洛旗| 彰化县| 乌兰浩特市| 扬中市| 勐海县| 定西市| 涿鹿县| 夹江县| 南宫市| 保定市| 南和县| 南昌市| 达日县| 华安县| 麦盖提县| 东台市| 咸阳市| 万荣县| 双柏县| 巴彦淖尔市| 武宣县| 马公市| 德清县| 永善县| 普兰店市| 改则县| 公主岭市| 高陵县| 海淀区| 三门县| 平谷区| 南溪县| 象州县| 崇仁县| 衡山县| 江川县| 弥渡县| 武陟县|