找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Markov Chains with Stationary Transition Probabilities; Kai Lai Chung Textbook 1960 Springer-Verlag Berlin Heidelberg 1960 Markov chain.Ma

[復(fù)制鏈接]
樓主: 強烈興趣
11#
發(fā)表于 2025-3-23 11:19:39 | 只看該作者
12#
發(fā)表于 2025-3-23 14:33:46 | 只看該作者
The moments of first entrance time distributionsIf . =1, then the sequence {., .≧1} determines a discrete probability distribution called the .. (For . = . this has also already been called the recurrence time distribution of . in §6.) Thus for each ., . is the moment of order . of this distribution; for .=. this is the . defined in § 9. More generally, let . be the taboo set; we write
13#
發(fā)表于 2025-3-23 20:21:18 | 只看該作者
14#
發(fā)表于 2025-3-24 01:08:35 | 只看該作者
15#
發(fā)表于 2025-3-24 05:56:53 | 只看該作者
16#
發(fā)表于 2025-3-24 06:43:37 | 只看該作者
Further limit theoremsIn this section we give several more limit theorems about . including the central limit theorem and the law of the iterated logarithm. The state space . will now be assumed to be positive class, in fact except in Theorem 1 below the stronger assumption that .< ∞ for some and hence all . will be made.
17#
發(fā)表于 2025-3-24 14:11:54 | 只看該作者
978-3-642-49408-6Springer-Verlag Berlin Heidelberg 1960
18#
發(fā)表于 2025-3-24 16:20:52 | 只看該作者
Markov Chains with Stationary Transition Probabilities978-3-642-49686-8Series ISSN 0072-7830 Series E-ISSN 2196-9701
19#
發(fā)表于 2025-3-24 22:55:02 | 只看該作者
20#
發(fā)表于 2025-3-24 23:57:26 | 只看該作者
Fundamental defintionson probabilities” so that the qualifying phrase in quotes will be understood. Finally, our discussion does not differentiate between a finite or a denumerably infinite number of states so that no special treatment is given to the former case.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建宁县| 那坡县| 龙海市| 渝中区| 安溪县| 肃南| 邵阳市| 湾仔区| 阿图什市| 祁连县| 乐陵市| 时尚| 永昌县| 包头市| 驻马店市| 唐海县| 重庆市| 宁化县| 崇阳县| 棋牌| 常熟市| 格尔木市| 太保市| 西乌珠穆沁旗| 绥宁县| 南乐县| 同德县| 新河县| 肥东县| 弋阳县| 揭东县| 青海省| 依安县| 江西省| 建瓯市| 藁城市| 阿合奇县| 西畴县| 朔州市| 江华| 西充县|