找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mappings of Operator Algebras; Proceedings of the J Huzihiro Araki,Richard V. Kadison Conference proceedings 1991 Birkh?user Boston, Inc. 1

[復(fù)制鏈接]
樓主: 輕佻
11#
發(fā)表于 2025-3-23 12:11:18 | 只看該作者
12#
發(fā)表于 2025-3-23 15:40:34 | 只看該作者
Kichi-Suke Saitoch miteinander zusammenh?ngen, da? bei allen der Begriff des Sto?es eine Rolle spielt. Es erscheint wünschenswert, eine vereinigende Darstellung dieses ganzen Fragengebietes zu besitzen. Den Ausgangspunkt bilden jene Probleme, die der gew?hnlichen oder ?klassischen“ Theorie des Sto?es fester K?rper
13#
發(fā)表于 2025-3-23 22:00:59 | 只看該作者
14#
發(fā)表于 2025-3-24 01:46:06 | 只看該作者
15#
發(fā)表于 2025-3-24 04:40:55 | 只看該作者
Representation of Quantum Groups,ther hand, Woronowicz [10] introduced the concept of compact matrix pseudogroups through the study of the dual object of groups. As pointed out by Rosso in [8], these two concepts are related to each other as quantum Lie algebras and quantum Lie groups. In this talk we want to indicate that the idea
16#
發(fā)表于 2025-3-24 09:24:12 | 只看該作者
Automorphism Groups and Covariant Irreducible Representations,ly compact group, and α is a continuous action of . on . by automorphisms with α * being the transposed action on ?. In other words, I would like to interpret the non-commutative system (.,.,α) in terms of the commutative-like system (?,.,α*). As this is still too general a problem, my main concern
17#
發(fā)表于 2025-3-24 12:34:17 | 只看該作者
18#
發(fā)表于 2025-3-24 18:06:20 | 只看該作者
19#
發(fā)表于 2025-3-24 22:48:14 | 只看該作者
On Primitive Ideal Spaces of C*-Algebras over Certain Locally Compact Groupoids, with Fell’s algebraic bundles over groups, we define the notion of .*-algebras over F and, given a .*-algebra . over Γ, we can form a .*-algebra .*(Γ, .) as the completion of the cross sectional algebra of .. In this note, under some stringent assumptions on Γ, we present a concrete realization of
20#
發(fā)表于 2025-3-24 23:32:30 | 只看該作者
,The Powers’ Binary Shifts on the Hyperfinite Factor of Type II1, adjoint unitary . such that . = {σ.(.); . ∈ IN ∪ {0}}″ and σ.(.). = ±.σ.(.) for . ∈ IN ∪ {0}. Let .(σ) be the number min{. ∈ IN; σ.(.)? ∩. = ?.}. It is shown that the number .(σ) is not the complete outer conjugacy invariant for a Powers’ binary shift.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻江县| 五大连池市| 鸡泽县| 浪卡子县| 密云县| 永安市| 内乡县| 阳高县| 江永县| 张掖市| 金门县| 葫芦岛市| 吉木乃县| 甘洛县| 武夷山市| 临城县| 甘肃省| 武胜县| 伊春市| 枞阳县| 白河县| 新营市| 垫江县| 寻乌县| 博罗县| 江孜县| 德庆县| 长泰县| 翁源县| 崇仁县| 淮阳县| 综艺| 内乡县| 西昌市| 都匀市| 册亨县| 深泽县| 揭西县| 梅河口市| 麻阳| 郑州市|