找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Managing with Total Quality Management; Theory and Practice Adrian Wilkinson,Tom Redman,Mick Marchington Textbook 1998Latest edition Macmil

[復(fù)制鏈接]
樓主: GRASS
41#
發(fā)表于 2025-3-28 15:57:50 | 只看該作者
42#
發(fā)表于 2025-3-28 18:52:05 | 只看該作者
43#
發(fā)表于 2025-3-28 22:56:19 | 只看該作者
44#
發(fā)表于 2025-3-29 04:17:57 | 只看該作者
Adrian Wilkinson,Tom Redman,Ed Snape,Mick Marchingtonecond order linear differential equation admits the explicit solution, for example, Liouvillian solution. To solve this problem it is possible to apply the Kovacic algorithm?[.] to the corresponding second order linear differential equation. In this paper we present our own method to derive the corr
45#
發(fā)表于 2025-3-29 07:21:48 | 只看該作者
Adrian Wilkinson,Tom Redman,Ed Snape,Mick Marchingtonin the autooscillatory system this dependence appears to be rather complex. In the time interval associated with existence of diffusion it can be, however, approximated with the power law. The dependence of it’s exponent on the dissipation parameter value and on the initial energy of the ensemble wa
46#
發(fā)表于 2025-3-29 14:30:07 | 只看該作者
47#
發(fā)表于 2025-3-29 16:13:55 | 只看該作者
Adrian Wilkinson,Tom Redman,Ed Snape,Mick Marchingtonifacts, but also independently. From the point of view of theoretical nonlinear dynamics they seem to be very interesting object for investigation. Earlier it was shown that implicit maps can combine properties of dissipative non-invertible and Hamiltonian systems. In the present paper strange invar
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 18:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芮城县| 包头市| 青浦区| 台山市| 新泰市| 万宁市| 仙居县| 高邮市| 阿瓦提县| 隆化县| 大竹县| 深州市| 罗田县| 临颍县| 天气| 华蓥市| 区。| 隆回县| 平顺县| 开封县| 韩城市| 潍坊市| 新和县| 定兴县| 秭归县| 彩票| 沿河| 佛教| 和平区| 石台县| 泉州市| 沁阳市| 利川市| 邵东县| 鄄城县| 治多县| 通渭县| 江城| 临夏县| 阿克| 苍梧县|