找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Making Transcendence Transparent; An intuitive approac Edward B. Burger,Robert Tubbs Textbook 2004 E.B. Burger and R. Tubbs 2004 complex an

[復制鏈接]
樓主: 不同
21#
發(fā)表于 2025-3-25 04:26:15 | 只看該作者
978-1-4419-1948-9E.B. Burger and R. Tubbs 2004
22#
發(fā)表于 2025-3-25 07:55:45 | 只看該作者
,0.1100010000000000000000010000…,mber is defined not by what it . but rather by what it is .. What will become apparent as we develop the classical theory of transcendental numbers is that every demonstration of the transcendence of a particular number is indirect—a number is shown to be transcendental by showing that it is not algebraic.
23#
發(fā)表于 2025-3-25 13:11:49 | 只看該作者
,2.7182818284590452353602874713…,rough this chapter sets the stage for much of what follows in our future explorations. To foreshadow the fundamental strategies to come, we open with Joseph Fourier’s 1815 clever proof of Euler’s result that . is irrational.
24#
發(fā)表于 2025-3-25 18:34:10 | 只看該作者
25#
發(fā)表于 2025-3-25 20:31:29 | 只看該作者
26#
發(fā)表于 2025-3-26 01:16:52 | 只看該作者
,,wer series. Specifically, we consider transcendence issues within the setting of function fields in a single variable over a finite field. While this theory has important implications in many different areas of mathematics, our goal here is to discover an object in this context that is analogous to the all-important exponential function ...
27#
發(fā)表于 2025-3-26 07:59:11 | 只看該作者
28#
發(fā)表于 2025-3-26 09:52:14 | 只看該作者
29#
發(fā)表于 2025-3-26 15:23:25 | 只看該作者
,0.1100010000000000000000010000…,mber is defined not by what it . but rather by what it is .. What will become apparent as we develop the classical theory of transcendental numbers is that every demonstration of the transcendence of a particular number is indirect—a number is shown to be transcendental by showing that it is not alg
30#
發(fā)表于 2025-3-26 17:29:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 08:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
山西省| 柳江县| 汤阴县| 临城县| 佛山市| 马公市| 施甸县| 岳阳县| 临汾市| 富平县| 和林格尔县| 鸡东县| 芮城县| 大同市| 卢氏县| 永康市| 北宁市| 荣昌县| 昭平县| 普兰店市| 昂仁县| 秭归县| 清新县| 逊克县| 荆门市| 宾川县| 涟源市| 昔阳县| 宜宾县| 隆尧县| 宁河县| 集贤县| 胶州市| 清镇市| 马边| 二连浩特市| 五家渠市| 江陵县| 石渠县| 梁河县| 行唐县|