找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Making Images with Mathematics; Alexei Sourin Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Sp

[復(fù)制鏈接]
樓主: fungus
21#
發(fā)表于 2025-3-25 05:58:35 | 只看該作者
22#
發(fā)表于 2025-3-25 10:12:06 | 只看該作者
23#
發(fā)表于 2025-3-25 13:56:56 | 只看該作者
978-3-030-69834-8The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
24#
發(fā)表于 2025-3-25 18:19:12 | 只看該作者
Making Images with Mathematics978-3-030-69835-5Series ISSN 1863-7310 Series E-ISSN 2197-1781
25#
發(fā)表于 2025-3-25 23:13:09 | 只看該作者
From Ancient Greeks to Pixels,The chapter explains how we see the world and how computer makes images. Beginning with Ancient Greek Geometry, it travels to modern geometry, introduces the subject of computer graphics and visualization, explains how the graphics pipeline works, and how a geometric point turns into a color spot on a computer screen.
26#
發(fā)表于 2025-3-26 00:57:44 | 只看該作者
Geometric Shapes,This chapter presents the mathematical foundations of shape modeling. Curves, surfaces, and solid objects are considered as set of points, which are obtained by sampling various types of mathematical functions. Using the concept of sweeping, many varieties of shapes are defined based on only a few simple foundation principles.
27#
發(fā)表于 2025-3-26 04:47:33 | 只看該作者
Transformations,This chapter considers how the same formulas, used for making shapes, can define their transformations. The rationale for using matrix transformations is explained and affine and projection matrix transformations are presented. Generalization of geometric sweeping implemented with matrices is further discussed.
28#
發(fā)表于 2025-3-26 10:43:41 | 只看該作者
29#
發(fā)表于 2025-3-26 15:04:23 | 只看該作者
Adding Visual Appearance to Geometry,In this chapter, we consider how visual appearance including colors, shadows, material properties and textures can be added to geometry and how its photorealistic appearance can be achieved. The formulas, previously used for defining geometry, now will define variable colors as a new modality of immersion into the world of geometric definitions.
30#
發(fā)表于 2025-3-26 20:09:47 | 只看該作者
Putting Everything Together,In this chapter, the ways of making interactive, real-time and immersive visualization environments are considered including technical and physiological design and implementation issues. Still the same transformations, and actually the same basic mathematical principles, will be used in the fast visualization methods.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 11:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
方正县| 军事| 兴国县| 莱西市| 广灵县| 隆子县| 莱阳市| 昭苏县| 屯留县| 修文县| 乐昌市| 汨罗市| 宝山区| 泽普县| 布尔津县| 德昌县| 桑植县| 宁国市| 旌德县| 阳新县| 德兴市| 蓬溪县| 万山特区| 长兴县| 霍州市| 鹤峰县| 吉木萨尔县| 赤峰市| 上蔡县| 从江县| 壤塘县| 紫阳县| 萝北县| 芜湖县| 石首市| 靖边县| 太谷县| 齐齐哈尔市| 西乌| 安康市| 常德市|