找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Magnetoelastic Vibrations and Stability of Magnetically Active Plates and Shells; Gevorg Y. Baghdasaryan,Marine A. Mikilyan Book 2024 The

[復制鏈接]
樓主: ANNOY
11#
發(fā)表于 2025-3-23 12:45:44 | 只看該作者
12#
發(fā)表于 2025-3-23 17:15:16 | 只看該作者
Issues of Magnetoelastic Interactions in Spherical Shells,neous magnetic field are derived. Based on them, mathematical modeling of the problem of static stability of superconducting closed spherical shell in magnetic field is done, when magnetic field is created by two parallel ring constant currents. Issues of non-contact holding of the shell by specifie
13#
發(fā)表于 2025-3-23 18:43:41 | 只看該作者
Vibrations and Stability of Magnetostrictive Rectangular Plates in a Magnetic Field, the first chapter, the issues of vibration and stability of rectangular thin plates in a magnetic field are investigated. Using Kirchhoff‘s hypothesis on non-deformable normals, the asymptotic method for integrating linear boundary value problems in a rectangular domain, and the basic principles of
14#
發(fā)表于 2025-3-23 22:26:17 | 只看該作者
15#
發(fā)表于 2025-3-24 06:06:45 | 只看該作者
Issues of Magnetoelastic Interactions in Spherical Shells,d magnetic field and stability of the shell in this state are considered. The problem of dynamic stability of superconducting shell under the influence of uniform non-stationary magnetic field is formulated and solved.
16#
發(fā)表于 2025-3-24 06:46:53 | 只看該作者
17#
發(fā)表于 2025-3-24 12:35:43 | 只看該作者
18#
發(fā)表于 2025-3-24 18:19:44 | 只看該作者
Basic Equations and Relations of Magnetoelasticity of Magnetoactive Deformable Bodies,uous medium. We also note that in this chapter, when presenting the well-known basis of the theory of magnetoelasticity of magnetoactive bodies, the methods of presentation from the monograph . are widely used.
19#
發(fā)表于 2025-3-24 19:48:36 | 只看該作者
20#
發(fā)表于 2025-3-25 00:41:07 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 04:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
汉寿县| 隆子县| 都江堰市| 珲春市| 南雄市| 扬中市| 凤阳县| 天门市| 晋中市| 桐庐县| 类乌齐县| 汶上县| 上杭县| 武陟县| 西城区| 宜君县| 玉山县| 茌平县| 淮滨县| 新余市| 绍兴市| 九江市| 武宁县| 景东| 盈江县| 中牟县| 图木舒克市| 磐安县| 甘泉县| 闵行区| 哈尔滨市| 深水埗区| 遂溪县| 乐都县| 清涧县| 新源县| 景东| 乐至县| 通海县| 兴海县| 绩溪县|