找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Macroscopic Modelling of Turbulent Flows; Proceedings of a Wor Uriel Frisch,Joseph B. Keller,Olivier Pironneau Conference proceedings 1985

[復(fù)制鏈接]
樓主: monster
11#
發(fā)表于 2025-3-23 15:44:20 | 只看該作者
12#
發(fā)表于 2025-3-23 21:31:35 | 只看該作者
13#
發(fā)表于 2025-3-24 00:46:18 | 只看該作者
14#
發(fā)表于 2025-3-24 05:31:29 | 只看該作者
Homogenization and visco-elasticity of turbulence,equation with 2.-periodic boundary conditions. It is found that these solutions exhibit visco-elastic behaviour under very large wavelength perturbations. This elasticity property is then extended to Navier-Stokes turbulence. It is suggested that two-dimensional flame fronts and various turbulent fl
15#
發(fā)表于 2025-3-24 08:52:35 | 只看該作者
16#
發(fā)表于 2025-3-24 12:43:11 | 只看該作者
Eddy viscosity subgrid scale models for homogeneous turbulence,dy viscosity. For the sake of simplicity, this model can be approximated by a wave number independent eddy viscosity. This constant eddy viscosity is expressed in terms of the small eddies, so that both the large scales and the small scales are known during the simulation for better comparison with
17#
發(fā)表于 2025-3-24 15:20:09 | 只看該作者
18#
發(fā)表于 2025-3-24 21:29:16 | 只看該作者
A stochastic subgrid model for sheared turbulence,on of the statistical properties of the small scales. The model is stochastic in order to allow a “desaveraging” of the informations provided by the E.D.Q.N.M. closure. It is basedon stochastic amplitude equations for two-point closures. It allows backflow of energy from the small scales, introduces
19#
發(fā)表于 2025-3-24 23:20:16 | 只看該作者
Numerical simulation of homogeneous turbulence, velocity gradients. The Taylor microscale Reynolds number is in the range 20–70. The two strains considered are plane strain and solid body rotation. For the plane strain case, the two described simulations show clearly the reorganizing processes of the turbulent field after each abrupt change of t
20#
發(fā)表于 2025-3-25 07:06:46 | 只看該作者
Time-dependent rayleigh-benard convection in low prandtl number fluids,bounding surfaces maintained at constant temperatures. We consider the case of free slip boundary con ditions for a fluid of Prandtl number Pr = 0.2 and that of nonslip boundary conditions for a fluid with Px = 0.025. In the former situation, we observe stationary, periodic, bi-periodic and chaotic
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 03:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林周县| 长丰县| 卢龙县| 牡丹江市| 杂多县| 林州市| 行唐县| 淮滨县| 淮阳县| 合山市| 长宁县| 秦皇岛市| 平凉市| 襄汾县| 左权县| 莒南县| 合江县| 达尔| 大余县| 依安县| 辽源市| 慈利县| 文山县| 德保县| 丹棱县| 隆化县| 稷山县| 宽城| 同心县| 林芝县| 修武县| 尚志市| 恭城| 揭阳市| 丹东市| 卓资县| 葵青区| 开阳县| 汉寿县| 上思县| 南投县|