找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machines, Computations, and Universality; 7th International Co Jerome Durand-Lose,Benedek Nagy Conference proceedings 2015 Springer Interna

[復(fù)制鏈接]
樓主: Wilson
41#
發(fā)表于 2025-3-28 16:42:20 | 只看該作者
42#
發(fā)表于 2025-3-28 20:43:07 | 只看該作者
Universality of Graph-controlled Leftist Insertion-deletion Systems with Two Statessymbol at a time. We start by introducing extended rules, in which the contexts may be specified as regular expressions, instead of fixed words. We then prove that leftist systems with such extended rules and two-state graph control can simulate any arbitrary 2-tag system. Finally, we show how our c
43#
發(fā)表于 2025-3-29 02:40:55 | 只看該作者
44#
發(fā)表于 2025-3-29 03:36:52 | 只看該作者
45#
發(fā)表于 2025-3-29 08:37:57 | 只看該作者
An Intrinsically Universal Family of Causal Graph Dynamics time-steps, with respect to two physics-like symmetries: causality (there exists a bounded speed of information propagation) and shift-invariance (the rewriting acts everywhere the same). Intrinsic universality is the ability of the instance of a model to simulate all other instances, while preserv
46#
發(fā)表于 2025-3-29 11:50:30 | 只看該作者
47#
發(fā)表于 2025-3-29 17:37:17 | 只看該作者
48#
發(fā)表于 2025-3-29 20:20:09 | 只看該作者
Universality in Infinite Petri Nets expanding traversals of the cell array. One net is obtained via direct simulation of the cellular automaton while the other net simulates a Turing machine, which simulates the cellular automaton. They use cell models of 21 and 14 nodes, respectively, and simulate the cellular automaton in polynomia
49#
發(fā)表于 2025-3-30 02:19:40 | 只看該作者
50#
發(fā)表于 2025-3-30 05:55:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 17:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芜湖县| 南昌县| 家居| 兰溪市| 隆林| 南昌市| 霍邱县| 读书| 岳普湖县| 东安县| 沽源县| 株洲市| 静乐县| 茂名市| 庄河市| 双峰县| 太白县| 花莲县| 肇源县| 陇川县| 东阳市| 新巴尔虎左旗| 石城县| 西林县| 怀宁县| 中牟县| 武清区| 唐海县| 二连浩特市| 屏山县| 江华| 邢台市| 西贡区| 综艺| 镇原县| 两当县| 江川县| 香港 | 甘泉县| 漳平市| 龙山县|