找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine-learning Techniques in Economics; New Tools for Predic Atin Basuchoudhary,James T. Bang,Tinni Sen Book 2017 The Author(s) 2017 Mach

[復(fù)制鏈接]
查看: 15130|回復(fù): 36
樓主
發(fā)表于 2025-3-21 16:38:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Machine-learning Techniques in Economics
副標(biāo)題New Tools for Predic
編輯Atin Basuchoudhary,James T. Bang,Tinni Sen
視頻videohttp://file.papertrans.cn/621/620805/620805.mp4
概述Offers a guide to how machine learning techniques can improve predictive power in answering economic questions.Provides R codes to help guide the researcher in applying machine learning techniques usi
叢書(shū)名稱(chēng)SpringerBriefs in Economics
圖書(shū)封面Titlebook: Machine-learning Techniques in Economics; New Tools for Predic Atin Basuchoudhary,James T. Bang,Tinni Sen Book 2017 The Author(s) 2017 Mach
描述This book develops a machine-learning framework for predicting economic growth. It can also be considered as a?primer for using machine learning (also known as data mining or data analytics) to answer economic questions. While machine learning itself is not a new idea, advances in computing technology combined with a dawning realization of its applicability to economic questions makes it a new tool for economists.?.
出版日期Book 2017
關(guān)鍵詞Machine learning; Data mining; Economic growth; Prediction; Ranking predictive variables; Forecasting; Eco
版次1
doihttps://doi.org/10.1007/978-3-319-69014-8
isbn_softcover978-3-319-69013-1
isbn_ebook978-3-319-69014-8Series ISSN 2191-5504 Series E-ISSN 2191-5512
issn_series 2191-5504
copyrightThe Author(s) 2017
The information of publication is updating

書(shū)目名稱(chēng)Machine-learning Techniques in Economics影響因子(影響力)




書(shū)目名稱(chēng)Machine-learning Techniques in Economics影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Machine-learning Techniques in Economics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Machine-learning Techniques in Economics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Machine-learning Techniques in Economics被引頻次




書(shū)目名稱(chēng)Machine-learning Techniques in Economics被引頻次學(xué)科排名




書(shū)目名稱(chēng)Machine-learning Techniques in Economics年度引用




書(shū)目名稱(chēng)Machine-learning Techniques in Economics年度引用學(xué)科排名




書(shū)目名稱(chēng)Machine-learning Techniques in Economics讀者反饋




書(shū)目名稱(chēng)Machine-learning Techniques in Economics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:20:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:55:14 | 只看該作者
地板
發(fā)表于 2025-3-22 07:10:06 | 只看該作者
5#
發(fā)表于 2025-3-22 11:50:35 | 只看該作者
6#
發(fā)表于 2025-3-22 14:26:49 | 只看該作者
Predicting Recessions: What We Learn from Widening the Goalposts,ct” growth variables to check whether these variables are better at predicting recessions. We show how prediction performance of algorithms differs widely depending on the type of prediction criteria. We can, however, identify some of the most salient predictors of recessions. These suggest that fis
7#
發(fā)表于 2025-3-22 20:52:44 | 只看該作者
8#
發(fā)表于 2025-3-22 23:57:39 | 只看該作者
9#
發(fā)表于 2025-3-23 02:13:15 | 只看該作者
,Predicting a Country’s Growth: A First Look,o validate different growth models. We suggest that validated algorithms enhance the confidence academics should place on any given theoretical growth model. We then show how machine learning can help researchers understand what kinds of concepts may make theoretical growth models more complete.
10#
發(fā)表于 2025-3-23 07:08:28 | 只看該作者
Book 2017 known as data mining or data analytics) to answer economic questions. While machine learning itself is not a new idea, advances in computing technology combined with a dawning realization of its applicability to economic questions makes it a new tool for economists.?.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天台县| 湖州市| 饶平县| 永昌县| 光山县| 武宣县| 湾仔区| 常州市| 泗水县| 蓝田县| 香港 | 开原市| 获嘉县| 余姚市| 灵武市| 吉水县| 宁河县| 博爱县| 巴马| 六安市| 延安市| 乳山市| 浦县| 靖州| 浦东新区| 体育| 正阳县| 酒泉市| 庆元县| 衡南县| 同德县| 长子县| 赣榆县| 双牌县| 延川县| 吴忠市| 石柱| 阳高县| 高安市| 同德县| 化德县|