找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Translation; 16th China Conferenc Junhui Li,Andy Way Conference proceedings 2020 Springer Nature Singapore Pte Ltd. 2020 artificial

[復(fù)制鏈接]
樓主: 貪吃的人
21#
發(fā)表于 2025-3-25 03:55:37 | 只看該作者
22#
發(fā)表于 2025-3-25 11:10:46 | 只看該作者
23#
發(fā)表于 2025-3-25 13:02:34 | 只看該作者
Transfer Learning for Chinese-Lao Neural Machine Translation with Linguistic Similarity,guistic differences, resulting in poor performance of Chinese-Lao neural machine translation (NMT) task. However, compared with the Chinese-Lao language pair, there are considerable cross-lingual similarities between Thai-Lao languages. According to these features, we propose a novel NMT approach. W
24#
發(fā)表于 2025-3-25 16:21:14 | 只看該作者
MTNER: A Corpus for Mongolian Tourism Named Entity Recognition,zation names. However, there is still a lack of data to identify travel-related named entities, especially in Mongolian. In this paper, we introduce a newly corpus for Mongolian Tourism Named Entity Recognition (MTNER), consisting of 16,000 sentences annotated with 18 entity types. We trained in-dom
25#
發(fā)表于 2025-3-25 23:27:06 | 只看該作者
Unsupervised Machine Translation Quality Estimation in Black-Box Setting,ence. QE is an important component in making machine translation useful in real-world applications. Existing approaches require large amounts of expert annotated data. Recently, there are some trials to perform QE in an unsupervised manner, but these methods are based on glass-box features which dem
26#
發(fā)表于 2025-3-26 03:14:16 | 只看該作者
YuQ: A Chinese-Uyghur Medical-Domain Neural Machine Translation Dataset Towards Knowledge-Driven,NNs) require a large amount of training data with a high-quality annotation which is not available or expensive in the field of the medical domain. The research of medical domain neural machine translation (NMT) is largely limited due to the lack of parallel sentences that consist of medical domain
27#
發(fā)表于 2025-3-26 05:38:11 | 只看該作者
28#
發(fā)表于 2025-3-26 09:26:53 | 只看該作者
29#
發(fā)表于 2025-3-26 14:48:38 | 只看該作者
30#
發(fā)表于 2025-3-26 17:53:43 | 只看該作者
Tsinghua University Neural Machine Translation Systems for CCMT 2020,the Chinese . English translation tasks. Our systems are based on Transformer architectures and we verified that deepening the encoder can achieve better results. All models are trained in a distributed way. We employed several data augmentation methods, including knowledge distillation, back-transl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 21:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遵义市| 呼和浩特市| 平定县| 定州市| 宁河县| 岳阳县| 新昌县| 平陆县| 武夷山市| 剑阁县| 大同县| 平舆县| 合作市| 拉孜县| 海城市| 馆陶县| 贡觉县| 林西县| 太康县| 江都市| 株洲市| 旬阳县| 涞源县| 泰来县| 慈利县| 武定县| 河北区| 永清县| 洮南市| 左权县| 太仆寺旗| 明光市| 潼南县| 乐至县| 城固县| 加查县| 泉州市| 厦门市| 东辽县| 中西区| 华池县|