找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning with Microsoft Technologies; Selecting the Right Leila Etaati Book 2019 Leila Etaati 2019 Microsoft Advance Analytics Arc

[復(fù)制鏈接]
查看: 24167|回復(fù): 58
樓主
發(fā)表于 2025-3-21 19:50:42 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning with Microsoft Technologies
副標(biāo)題Selecting the Right
編輯Leila Etaati
視頻videohttp://file.papertrans.cn/621/620714/620714.mp4
概述Offers methods for choosing the right architecture for a machine learning solution using Microsoft technologies.Gives you valuable knowledge for creating, developing, and deploying machine learning in
圖書封面Titlebook: Machine Learning with Microsoft Technologies; Selecting the Right  Leila Etaati Book 2019 Leila Etaati 2019 Microsoft Advance Analytics Arc
描述.Know how to do machine learning with Microsoft technologies. This book teaches you to do predictive, descriptive, and prescriptive analyses with Microsoft Power BI, Azure Data Lake, SQL Server, Stream Analytics, Azure Databricks, HD Insight, and more..The ability to analyze massive amounts of real-time data and predict future behavior of an organization is critical to its long-term success. Data science, and more specifically machine learning (ML), is today’s game changer and should be a key building block in every company’s strategy. Managing a machine learning process from business understanding, data acquisition and cleaning, modeling, and deployment in each tool is a valuable skill set...Machine Learning with Microsoft Technologies. is a demo-driven book that explains how to do machine learning with Microsoft technologies. You will gain valuable insight into designing the best architecture for development, sharing, and deploying a machine learning solution. This book simplifies the process of choosing the right architecture and tools for doing machine learning based on your specific infrastructure needs and requirements. ..Detailed content is provided on the main algorithms fo
出版日期Book 2019
關(guān)鍵詞Microsoft Advance Analytics Architecture; R services; Machine Learning Services; Azure Data Lake; Spark;
版次1
doihttps://doi.org/10.1007/978-1-4842-3658-1
isbn_softcover978-1-4842-3657-4
isbn_ebook978-1-4842-3658-1
copyrightLeila Etaati 2019
The information of publication is updating

書目名稱Machine Learning with Microsoft Technologies影響因子(影響力)




書目名稱Machine Learning with Microsoft Technologies影響因子(影響力)學(xué)科排名




書目名稱Machine Learning with Microsoft Technologies網(wǎng)絡(luò)公開度




書目名稱Machine Learning with Microsoft Technologies網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning with Microsoft Technologies被引頻次




書目名稱Machine Learning with Microsoft Technologies被引頻次學(xué)科排名




書目名稱Machine Learning with Microsoft Technologies年度引用




書目名稱Machine Learning with Microsoft Technologies年度引用學(xué)科排名




書目名稱Machine Learning with Microsoft Technologies讀者反饋




書目名稱Machine Learning with Microsoft Technologies讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:42:08 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:43:30 | 只看該作者
地板
發(fā)表于 2025-3-22 08:28:01 | 只看該作者
5#
發(fā)表于 2025-3-22 10:29:34 | 只看該作者
6#
發(fā)表于 2025-3-22 14:39:49 | 只看該作者
7#
發(fā)表于 2025-3-22 17:26:18 | 只看該作者
8#
發(fā)表于 2025-3-22 23:59:32 | 只看該作者
Data Wrangling for Predictive AnalysisIn the machine learning process, after business understanding, the next step is collecting the right data, feature selection, and data wrangling. Data wrangling includes data cleaning, joining different data sources, quality control, data integration, data transformation, and data reduction processes (Figure 6-1).
9#
發(fā)表于 2025-3-23 04:20:03 | 只看該作者
Introduction to Machine Learningrch and specific industries. In most fields, there is a valuable opportunity to use machine learning to obtain more concise and in-depth information from available data. As a result, most big software companies provide opportunities to their users to access machine learning via easy-to-use software.
10#
發(fā)表于 2025-3-23 06:26:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
滨海县| 剑阁县| 佛学| 沈阳市| 东至县| 儋州市| 杨浦区| 井研县| 花莲市| 阿克苏市| 灌云县| 南靖县| 乡宁县| 安图县| 彭水| 邯郸县| 交城县| 武平县| 丹凤县| 平果县| 怀柔区| 宝兴县| 遂昌县| 新疆| 威海市| 井陉县| 兴宁市| 浦城县| 海丰县| 宣武区| 乡宁县| 蕲春县| 泗洪县| 波密县| 沽源县| 永清县| 高唐县| 大城县| 景谷| 沛县| 四子王旗|