找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology; Third International Seyed Mostafa Kia,Hassan Mohy-ud-Din,Ma

[復(fù)制鏈接]
樓主: miserly
31#
發(fā)表于 2025-3-26 22:04:56 | 只看該作者
32#
發(fā)表于 2025-3-27 04:08:06 | 只看該作者
33#
發(fā)表于 2025-3-27 06:48:53 | 只看該作者
Multiple Sclerosis Lesion Segmentation Using Longitudinal Normalization and Convolutional Recurrent d inflammatory activities are examined by longitudinal image analysis to support diagnosis and treatment decision. Automated lesion segmentation methods based on deep convolutional neural networks (CNN) have been proposed, but are not yet applied in the clinical setting. Typical CNNs working on cros
34#
發(fā)表于 2025-3-27 09:26:42 | 只看該作者
35#
發(fā)表于 2025-3-27 13:48:15 | 只看該作者
A Deep Transfer Learning Framework for 3D Brain Imaging Based on Optimal Mass Transportuirements to optimize performance. In this study, we propose a deep transfer learning network based on Optimal Mass Transport (OMTNet) for 3D brain image classification using MRI scans from the UK Biobank. The major contributions of the OMTNet method include: a way to map?3D surface-based vertex-wis
36#
發(fā)表于 2025-3-27 21:35:35 | 只看該作者
37#
發(fā)表于 2025-3-28 01:29:01 | 只看該作者
Bidirectional Modeling and Analysis of Brain Aging with Normalizing Flowsg able to generate age-specific brain morphology templates that realistically represent the typical aging trend in a healthy population. This work is a step towards unified modeling of functional relationships between 3D brain morphology and clinical variables of interest with powerful normalizing f
38#
發(fā)表于 2025-3-28 02:53:53 | 只看該作者
A Multi-task Deep Learning Framework to Localize the Eloquent Cortex in Brain Tumor Patients Using Dional deep learning approaches and can identify bilateral language areas even when trained on left-hemisphere lateralized cases. Hence, our method may ultimately be useful for preoperative mapping in tumor patients.
39#
發(fā)表于 2025-3-28 09:16:42 | 只看該作者
40#
發(fā)表于 2025-3-28 12:56:44 | 只看該作者
An Anatomically-Informed 3D CNN for Brain Aneurysm Classification with Weak Labelsbutions. To tackle this frequent scenario of inherently imbalanced, spatially skewed data sets, we propose a novel, anatomically-driven approach by using a multi-scale and multi-input 3D Convolutional Neural Network (CNN). We apply our model to 214 subjects (83 patients, 131 controls) who underwent
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 13:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
繁昌县| 太和县| 赣榆县| 台东县| 汝州市| 平陆县| 灌云县| 日喀则市| 苏尼特左旗| 石棉县| 嘉善县| 南宫市| 夏河县| 苍溪县| 阳泉市| 资源县| 宁夏| 酉阳| 沙坪坝区| 永定县| 墨脱县| 呼伦贝尔市| 华宁县| 庆安县| 博罗县| 隆尧县| 右玉县| 秦皇岛市| 虞城县| 贺兰县| 天津市| 民县| 拉孜县| 什邡市| 黔东| 庆元县| 德州市| 衡阳市| 钟山县| 临夏市| 旬阳县|