找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Clinical Neuroimaging; 6th International Wo Ahmed Abdulkadir,Deepti R. Bathula,Yiming Xiao Conference proceedings 2023

[復制鏈接]
樓主: ED431
51#
發(fā)表于 2025-3-30 08:31:06 | 只看該作者
Joint Estimation of Neural Events and Hemodynamic Response Functions from Task fMRI via Convolutionaunctions (HRF) can enable new insights into functional connectivity, task activation, and neurovascular coupling in health and disease. Current methods for this problem handle time series of either temporally isolated events or extended blocks of continuous events but not both; and they constrain th
52#
發(fā)表于 2025-3-30 16:06:45 | 只看該作者
53#
發(fā)表于 2025-3-30 20:02:24 | 只看該作者
Causal Sensitivity Analysis for Hidden Confounding: Modeling the Sex-Specific Role of Diet on the Agalth for an individual is not clear. Clinical trials allow for the modification of a single variable at a time, but these may not generalize to populations due to uncaptured confounding effects. Large scale epidemiological studies can be leveraged to robustly model associations that can be specifica
54#
發(fā)表于 2025-3-30 23:58:26 | 只看該作者
MixUp Brain-Cortical Augmentations in?Self-supervised Learning general population, new learning strategies have emerged. In particular, deep representation learning consists of training a model via pretext tasks that can be used to solve downstream clinical problems of interest. More recently, self-supervised learning provides a rich framework for learning rep
55#
發(fā)表于 2025-3-31 03:40:28 | 只看該作者
Brain Age Prediction Based on?Head Computed Tomography Segmentationspite the widespread availability of head computed tomography (CT) images in clinical settings, limited research has been dedicated to predicting brain age within this modality, often constrained to narrow age ranges or substantial disparities between predicted and chronological age. To address this
56#
發(fā)表于 2025-3-31 07:27:13 | 只看該作者
57#
發(fā)表于 2025-3-31 10:50:32 | 只看該作者
Copy Number Variation Informs fMRI-Based Prediction of?Autism Spectrum Disorderta from widely varying platforms, e.g., neuroimaging, genetics, and clinical characterization. Prior neuroimaging-genetic analyses often apply naive feature concatenation approaches in data-driven work or use the findings from one modality to guide posthoc analysis of another, missing the opportunit
58#
發(fā)表于 2025-3-31 13:45:33 | 只看該作者
59#
發(fā)表于 2025-3-31 17:33:30 | 只看該作者
Stroke Outcome and Evolution Prediction from CT Brain Using a Spatiotemporal Diffusion Autoencoder individualizing clinical decision-making leading to better outcomes. However, despite a plethora of attempts and the rich data provided by neuroimaging, modelling the ultimate fate of brain tissue remains a challenging task. In this work, we apply recent ideas in the field of diffusion probabilisti
60#
發(fā)表于 2025-4-1 01:34:11 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 20:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
东光县| 岑溪市| 原阳县| 视频| 乐昌市| 马尔康县| 辽中县| 新和县| 南宫市| 资兴市| 和林格尔县| 洛浦县| 宜昌市| 喀喇沁旗| 拉孜县| 梅州市| 河西区| 滨州市| 高阳县| 松原市| 翁源县| 阆中市| 丰台区| 四平市| 秭归县| 海南省| 微博| 巍山| 花莲市| 馆陶县| 吴堡县| 溧水县| 丽水市| 定安县| 伽师县| 武功县| 山东| 澎湖县| 福贡县| 河东区| 察隅县|