找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Vision-Based Motion Analysis; Theory and Technique Liang Wang,Guoying Zhao,Matti Pietik?inen Book 2011 Springer-Verlag

[復(fù)制鏈接]
樓主: BULB
41#
發(fā)表于 2025-3-28 16:13:50 | 只看該作者
https://doi.org/10.1007/978-0-85729-057-1Computer Vision; Graphical Models; Kernel Machines; Machine Learning; Manifold Learning; Motion Analysis;
42#
發(fā)表于 2025-3-28 21:39:08 | 只看該作者
Practical Algorithms of Spectral Clustering: Toward Large-Scale Vision-Based Motion Analysisdata on separate nonlinear manifolds. Reducing its computational expense without critical loss of accuracy contributes to its practical use especially in vision-based applications. The present algorithms exploit random projection and subsampling techniques for reducing dimensionality and the cost fo
43#
發(fā)表于 2025-3-28 23:27:07 | 只看該作者
Riemannian Manifold Clustering and?Dimensionality Reduction for?Vision-Based?Analysisers based upon image properties such as intensity, color, texture, or motion. Most existing segmentation algorithms proceed by associating a feature vector to each pixel in the image or video and then segmenting the data by clustering these feature vectors. This process can be phrased as a manifold
44#
發(fā)表于 2025-3-29 06:08:14 | 只看該作者
Manifold Learning for Multi-dimensional Auto-regressive Dynamical Modelsl metric is selected among a family of pullback metrics induced by the Fisher information tensor through a parameterized automorphism. The problem of classifying motions, encoded as dynamical models of a certain class, can then be posed on the learnt manifold. In particular, we consider the class of
45#
發(fā)表于 2025-3-29 07:17:49 | 只看該作者
Mixed-State Markov Models in Image Motion Analysisprobability mass at zero velocity, while the rest of the motion values may be appropriately modeled with a continuous distribution. This suggests the introduction of mixed-state random variables that have probability mass concentrated in discrete states, while they have a probability density over a
46#
發(fā)表于 2025-3-29 14:42:31 | 只看該作者
47#
發(fā)表于 2025-3-29 18:23:45 | 只看該作者
Discriminative Multiple Target Trackinggets. The single appearance model effectively captures the discriminative visual information among the different visual targets as well as the background. The appearance modeling and the tracking of the multiple targets are all cast in a discriminative metric learning framework. We manifest that an
48#
發(fā)表于 2025-3-29 21:47:48 | 只看該作者
49#
發(fā)表于 2025-3-30 03:54:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 01:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新巴尔虎左旗| 从江县| 通化市| 巴彦淖尔市| 濮阳市| 荣昌县| 昭觉县| 绩溪县| 宜君县| 嘉定区| 安泽县| 银川市| 祁阳县| 莆田市| 阿城市| 海晏县| 镇原县| 巴彦县| 太谷县| 夏邑县| 张家界市| 夏津县| 怀来县| 禄丰县| 霍林郭勒市| 进贤县| 景东| 邵武市| 轮台县| 洞头县| 璧山县| 榕江县| 都兰县| 洮南市| 巧家县| 疏附县| 榆树市| 潜山县| 灵山县| 苍溪县| 昂仁县|