找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Microbial Phenotype Prediction; Roman Feldbauer Book 2016 The Editor(s) (if applicable) and The Author(s), under excl

[復(fù)制鏈接]
查看: 46673|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:03:48 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Machine Learning for Microbial Phenotype Prediction
編輯Roman Feldbauer
視頻videohttp://file.papertrans.cn/621/620632/620632.mp4
概述Publication in the field of Bioinformatic Science.Includes supplementary material:
叢書(shū)名稱BestMasters
圖書(shū)封面Titlebook: Machine Learning for Microbial Phenotype Prediction;  Roman Feldbauer Book 2016 The Editor(s) (if applicable) and The Author(s), under excl
描述This thesis presents a scalable, generic methodology for microbial phenotype prediction based on supervised machine learning, several models for biological and ecological traits of high relevance, and the deployment in metagenomic datasets. The results suggest that the presented prediction tool can be used to automatically annotate phenotypes in near-complete microbial genome sequences, as generated in large numbers in current metagenomic studies. Unraveling relationships between a living organism‘s genetic information and its observable traits is a central biological problem. Phenotype prediction facilitated by machine learning techniques will be a major step forward to creating biological knowledge from big data.
出版日期Book 2016
關(guān)鍵詞bioinformatics; microorganisms; metagenomics; genotype; classification
版次1
doihttps://doi.org/10.1007/978-3-658-14319-0
isbn_softcover978-3-658-14318-3
isbn_ebook978-3-658-14319-0Series ISSN 2625-3577 Series E-ISSN 2625-3615
issn_series 2625-3577
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wies
The information of publication is updating

書(shū)目名稱Machine Learning for Microbial Phenotype Prediction影響因子(影響力)




書(shū)目名稱Machine Learning for Microbial Phenotype Prediction影響因子(影響力)學(xué)科排名




書(shū)目名稱Machine Learning for Microbial Phenotype Prediction網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Machine Learning for Microbial Phenotype Prediction網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Machine Learning for Microbial Phenotype Prediction被引頻次




書(shū)目名稱Machine Learning for Microbial Phenotype Prediction被引頻次學(xué)科排名




書(shū)目名稱Machine Learning for Microbial Phenotype Prediction年度引用




書(shū)目名稱Machine Learning for Microbial Phenotype Prediction年度引用學(xué)科排名




書(shū)目名稱Machine Learning for Microbial Phenotype Prediction讀者反饋




書(shū)目名稱Machine Learning for Microbial Phenotype Prediction讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:42:58 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:11:34 | 只看該作者
2625-3577 microbial phenotype prediction based on supervised machine learning, several models for biological and ecological traits of high relevance, and the deployment in metagenomic datasets. The results suggest that the presented prediction tool can be used to automatically annotate phenotypes in near-comp
地板
發(fā)表于 2025-3-22 05:20:41 | 只看該作者
5#
發(fā)表于 2025-3-22 10:29:55 | 只看該作者
2625-3577 netic information and its observable traits is a central biological problem. Phenotype prediction facilitated by machine learning techniques will be a major step forward to creating biological knowledge from big data.978-3-658-14318-3978-3-658-14319-0Series ISSN 2625-3577 Series E-ISSN 2625-3615
6#
發(fā)表于 2025-3-22 15:23:06 | 只看該作者
Book 2016. Unraveling relationships between a living organism‘s genetic information and its observable traits is a central biological problem. Phenotype prediction facilitated by machine learning techniques will be a major step forward to creating biological knowledge from big data.
7#
發(fā)表于 2025-3-22 18:50:13 | 只看該作者
8#
發(fā)表于 2025-3-22 21:58:39 | 只看該作者
https://doi.org/10.1007/978-3-658-14319-0bioinformatics; microorganisms; metagenomics; genotype; classification
9#
發(fā)表于 2025-3-23 05:22:16 | 只看該作者
978-3-658-14318-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wies
10#
發(fā)表于 2025-3-23 08:56:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
唐河县| 兰考县| 南部县| 清原| 苏尼特左旗| 普陀区| 犍为县| 泗水县| 峨眉山市| 五常市| 二手房| 井研县| 望都县| 东方市| 鄱阳县| 西安市| 宁波市| 华坪县| 仙游县| 阿图什市| 平顺县| 新安县| 深泽县| 定远县| 广安市| 公主岭市| 钦州市| 延庆县| 常州市| 社旗县| 田阳县| 屏山县| 西充县| 贵州省| 图木舒克市| 梓潼县| 建德市| 颍上县| 哈尔滨市| 灵寿县| 阜新|