找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Economics and Finance in TensorFlow 2; Deep Learning Models Isaiah Hull Book 2021 Isaiah Hull 2021 Machine Learning.Da

[復(fù)制鏈接]
樓主: 動(dòng)詞
21#
發(fā)表于 2025-3-25 06:54:40 | 只看該作者
Theoretical Models,er, we explain?how theoretical economic models can be defined and solved in TensorFlow. We also?discuss the use of reinforcement learning as a means of solving models?and briefly?consider an example that involves?deep?Q-learning.
22#
發(fā)表于 2025-3-25 08:13:33 | 只看該作者
oblems with an empirical dimension.Define and solve any mathMachine learning has taken time to move into the space of academic economics. This is because empirical research in economics is concentrated on the identification of causal relationships in parsimonious statistical models; whereas machine
23#
發(fā)表于 2025-3-25 11:43:44 | 只看該作者
TensorFlow 2, 2, which was a substantial departure from TensorFlow 1. In this chapter, we will introduce TensorFlow 2, explain how it can be used in economics and finance, and then review preliminary material that will be necessary for understanding the material in later chapters. .
24#
發(fā)表于 2025-3-25 18:53:57 | 只看該作者
Trees,lems in economics and finance.?In this chapter, we introduce the concept of tree-based models, including random forests and gradient-boosted trees,?and then?examine their implementation in the high-level Estimators API.
25#
發(fā)表于 2025-3-25 20:51:35 | 只看該作者
26#
發(fā)表于 2025-3-26 03:57:06 | 只看該作者
Time Series,n. There is, however, a clear intersection between objectives when it comes to forecasting in economics and finance. Throughout this chapter, we will?use machine learning and TensorFlow?to forecast inflation in a time series context, building on an early use of neural networks in economics (Nakamura 2005).
27#
發(fā)表于 2025-3-26 06:16:07 | 只看該作者
28#
發(fā)表于 2025-3-26 10:46:06 | 只看該作者
Isaiah HullGain a full pipeline of tools needed to structure and develop an ML economics project.Apply a variety of deep learning models to economic problems with an empirical dimension.Define and solve any math
29#
發(fā)表于 2025-3-26 15:30:06 | 只看該作者
30#
發(fā)表于 2025-3-26 17:44:27 | 只看該作者
https://doi.org/10.1007/978-1-4842-6373-0Machine Learning; Data Science; Big Data; Economics; Finance; TesnorFlow; Deep Learning; Text Analysis; Natu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤山市| 信宜市| 竹北市| 铅山县| 永登县| 巍山| 金秀| 海阳市| 兰考县| 右玉县| 沛县| 广河县| 喀喇沁旗| 错那县| 大渡口区| 福清市| 新密市| 吉木乃县| 龙游县| 神农架林区| 神池县| 肇庆市| 庆元县| 瑞昌市| 灵武市| 图片| 灯塔市| 固镇县| 和林格尔县| 马边| 洛川县| 舒城县| 苗栗市| 孝感市| 山东省| 卢湾区| 文昌市| 田林县| 平乐县| 五大连池市| 澜沧|