找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Earth Sciences; Using Python to Solv Maurizio Petrelli Textbook 2023 The Editor(s) (if applicable) and The Author(s),

[復制鏈接]
樓主: NO610
21#
發(fā)表于 2025-3-25 07:21:41 | 只看該作者
22#
發(fā)表于 2025-3-25 08:12:05 | 只看該作者
Textbook 2023ata, well-log data facies classification, and machine learning regression in petrology. Also, the book introduces the basics of parallel computing and how to scale ML models in the cloud. The book is devoted to Earth Scientists, at any level, from students to academics and professionals..
23#
發(fā)表于 2025-3-25 13:34:21 | 只看該作者
24#
發(fā)表于 2025-3-25 17:06:17 | 只看該作者
Machine Learning for Earth Sciences978-3-031-35114-3Series ISSN 2510-1307 Series E-ISSN 2510-1315
25#
發(fā)表于 2025-3-25 21:20:07 | 只看該作者
26#
發(fā)表于 2025-3-26 03:02:34 | 只看該作者
27#
發(fā)表于 2025-3-26 04:47:15 | 只看該作者
https://doi.org/10.1007/978-3-031-35114-3Deep Learning; Application of Machine Learning; Python Tools and Techniques; Tree-Based Models; ML Tools
28#
發(fā)表于 2025-3-26 11:52:43 | 只看該作者
Clustering of Multi-Spectral Dataions. It describes how to import, pre-process, describe, and analyze multi-spectral data that can be downloaded from access points such as USGS Earth Explorer, the Copernicus Open Access Hub, and Theia.
29#
發(fā)表于 2025-3-26 12:54:16 | 只看該作者
Introduction to Machine LearningThis chapter introduces the basics of machine learning to geologists. Toward this end, it first provides fundamental definitions and introduces common terminology. It then discusses the learning process and defines the different types of learning paradigms (i.e., supervised, unsupervised, and semisupervised).
30#
發(fā)表于 2025-3-26 18:30:20 | 只看該作者
Setting Up Your Python Environments for Machine LearningThis chapter details how to prepare a Python environment to start working with Machine Learning in Earth Sciences. First, it shows how to set up a local Python environment, and then how to create a remote Linux instance. Finally, it explains how to start working with cloud-based machine learning environments.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-20 17:05
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
斗六市| 镇宁| 香河县| 师宗县| 高邑县| 偏关县| 阿拉善盟| 金平| 永登县| 水城县| 若尔盖县| 金阳县| 安顺市| 卢氏县| 赤壁市| 郯城县| 裕民县| 荆门市| 大石桥市| 姚安县| 汾西县| 社旗县| 北票市| 建阳市| 杨浦区| 苍山县| 平和县| 石屏县| 清水河县| 台山市| 托里县| 怀柔区| 阿巴嘎旗| 南通市| 齐河县| 武山县| 栾城县| 甘孜| 琼中| 南投市| 商洛市|