找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Other Soft Computing Techniques: Biomedical and Related Applications; Nguyen Hoang Phuong,Nguyen Thi Huyen Chau,Vladi

[復(fù)制鏈接]
樓主: culinary
41#
發(fā)表于 2025-3-28 14:35:25 | 只看該作者
42#
發(fā)表于 2025-3-28 20:54:26 | 只看該作者
,How to?Best Retrain a?Neural Network if?We Added One More Input Variable,re-training will take a lot of time, almost as much as the original training. In this paper, we show, both theoretically and experimentally, that in such situations, we can speed up re-training—practically without decreasing resulting accuracy—if we only update some weights.
43#
發(fā)表于 2025-3-29 00:57:36 | 只看該作者
44#
發(fā)表于 2025-3-29 04:29:22 | 只看該作者
45#
發(fā)表于 2025-3-29 10:19:55 | 只看該作者
,Why Bump Reward Function Works Well in?Training Insulin Delivery Systems,situations and regulate blood glucose level, patients with severe form of diabetes need insulin injections. Ideally, the system should automatically decide when best to inject insulin and how much to inject. To find the optimal control, researchers applied machine learning with different reward func
46#
發(fā)表于 2025-3-29 14:42:49 | 只看該作者
47#
發(fā)表于 2025-3-29 16:20:19 | 只看該作者
,How to?Best Retrain a?Neural Network if?We Added One More Input Variable,values of an additional quantity that have some influence on .. In such situations, it is desirable to re-train the neural network, so that it will be able to take this extra value into account. A straightforward idea is to add a new input to the first layer and to update all the weights based on th
48#
發(fā)表于 2025-3-29 22:45:32 | 只看該作者
,Towards a?Psychologically Natural Relation Between Colors and?Fuzzy Degrees,ium: light. Light consists of components of different color. So, if we use optical color computations to process fuzzy data, we need to associate fuzzy degrees with colors. One of the main features—and of the main advantages—of fuzzy technique is that the corresponding data has intuitive natural mea
49#
發(fā)表于 2025-3-30 00:19:04 | 只看該作者
50#
發(fā)表于 2025-3-30 07:50:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平武县| 高安市| 武平县| 望城县| 武冈市| 浮山县| 平遥县| 乾安县| 邯郸市| 新龙县| 北海市| 凤庆县| 崇州市| 平舆县| 濮阳市| 双城市| 大洼县| 阜城县| 汉寿县| 桦川县| 扎囊县| 永和县| 许昌市| 石楼县| 长治市| 台安县| 南召县| 志丹县| 甘孜| 高邮市| 辽中县| 昔阳县| 长泰县| 前郭尔| 淮安市| 英德市| 宁国市| 枣阳市| 巴青县| 平利县| 阿勒泰市|