找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Com; First International Hongen Liao,Simo

[復(fù)制鏈接]
樓主: 動(dòng)詞
41#
發(fā)表于 2025-3-28 18:29:08 | 只看該作者
42#
發(fā)表于 2025-3-28 21:30:23 | 只看該作者
43#
發(fā)表于 2025-3-29 02:59:07 | 只看該作者
Shelda Sajeev,Anthony Maeder,Stephanie Champion,Alline Beleigoli,Cheng Ton,Xianglong Kong,Minglei Sh
44#
發(fā)表于 2025-3-29 03:43:09 | 只看該作者
Zijian Ding,Shan Qiu,Yutong Guo,Jianping Lin,Li Sun,Dapeng Fu,Zhen Yang,Chengquan Li,Yang Yu,Long Me
45#
發(fā)表于 2025-3-29 11:16:11 | 只看該作者
Bowen Fan,Naoki Tomii,Hiroyuki Tsukihara,Eriko Maeda,Haruo Yamauchi,Kan Nawata,Asuka Hatano,Shu Taka
46#
發(fā)表于 2025-3-29 13:22:45 | 只看該作者
Renzo Phellan,Thomas Lindner,Michael Helle,Alexandre X. Falc?o,Nils D. Forkert
47#
發(fā)表于 2025-3-29 16:35:15 | 只看該作者
Arrhythmia Classification with Attention-Based Res-BiLSTM-Netias according to combined features. Our method achieved a good result with an average F1score of 0.8757 on a multi-label arrhythmias classification problem in the First China ECG Intelligent Competition.
48#
發(fā)表于 2025-3-29 23:48:25 | 只看該作者
A Multi-label Learning Method to Detect Arrhythmia Based on 12-Lead ECGsetween positive samples and negative samples. Moreover, we construct a Squeeze and Excitation-ResNet (SE-ResNet) module for normal rhythm and arrhythmia detection. In order to solve the multi-label classification problem, we train nine different binary classifiers for each category and determine whi
49#
發(fā)表于 2025-3-30 01:12:02 | 只看該作者
Transfer Learning for Electrocardiogram Classification Under Small Datasetsingle lead. Then it is continuously fine-tuned on the competition dataset with 12 leads. The performance of the proposed network is improved a lot. The proposed method achieves . score of 0.89 and 0.86 in the hidden test set of preliminary and rematch, respectively. The research code will be releas
50#
發(fā)表于 2025-3-30 07:43:26 | 只看該作者
A 12-Lead ECG Arrhythmia Classification Method Based on 1D Densely Connected CNNhan one abnormal types. The approach has been validated against The First China ECG Intelligent Competition data set, obtaining a final F1 score of 0.873 and 0.863 on the validation set and test set, respectively.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 06:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
虹口区| 玉门市| 大厂| 故城县| 五台县| 磴口县| 沐川县| 泸溪县| 长葛市| 满城县| 万州区| 正定县| 贞丰县| 徐州市| 奎屯市| 泰和县| 迁安市| 合肥市| 于田县| 垦利县| 新晃| 甘南县| 古蔺县| 基隆市| 宝山区| 襄樊市| 永德县| 宝坻区| 泰宁县| 贡觉县| 泾阳县| 元谋县| 弋阳县| 东海县| 台北县| 涿鹿县| 汤原县| 徐汇区| 大丰市| 宿迁市| 凤城市|