找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Mechanics Based Soft Computing Applications; Thi Dieu Linh Nguyen,Joan Lu Book 2023 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: 威風(fēng)
11#
發(fā)表于 2025-3-23 21:48:31 | 只看該作者
12#
發(fā)表于 2025-3-24 00:17:59 | 只看該作者
13#
發(fā)表于 2025-3-24 04:58:32 | 只看該作者
,Hybrid SARIMA—GRU Model Based on?STL for?Forecasting Water Level in?Red River North Vietnam,which is near Ha Noi, in this study. The new model is known as the SARIMA-GRU hybrid model, which can fully exploit seasonal patterns in the data. In comparison to the single models SARIMA and GRU, as well as the model ARIMA-RNN, published by Xu et al. in 2019, the new model has produced better results.
14#
發(fā)表于 2025-3-24 10:22:44 | 只看該作者
15#
發(fā)表于 2025-3-24 13:42:57 | 只看該作者
Parallel, Distributed Model Checking of Composite Web Services with Integrated Choreography and Orcgency (VTA) protocol and Fresh Market Update (FMU) service and illustrate the model-checking procedure on these protocols to verify the synchronizability and reachability properties of the protocol in an efficient manner, with parallel, distributed algorithm incurring polynomial time complexity.
16#
發(fā)表于 2025-3-24 18:28:47 | 只看該作者
Book 2023al intelligence, machine learning, and mechanics, a mix of mechanical computational engineering work.? The current computing era has a huge market/potential for machine learning, robotics, and soft computing techniques and their applications.? With this in view, the book shares latest research and c
17#
發(fā)表于 2025-3-24 21:30:32 | 只看該作者
Count the Number of Steel Bars Based on Deep Learning,n. In the first step, we collect data and labeling. Second, data is trained and fine-tuned by the Faster-RCNN FPN model. Finally, predict the test data from the trained model. Based on the mean Average Precision metric, the steel bars detection result is 67%. The experience shows that this approach is feasible for counting the steel bars.
18#
發(fā)表于 2025-3-24 23:38:12 | 只看該作者
Book 2023ential for machine learning, robotics, and soft computing techniques and their applications.? With this in view, the book shares latest research and cutting-edge applications useful for professionals and researchers in these areas..?
19#
發(fā)表于 2025-3-25 06:43:25 | 只看該作者
,Context-Based and?Collaboration-Based Product Recommendation Approaches for?a?Clothes Online Sale Sctorization (NMF), and matrix factorization (MF) for the comparison. The method is evaluated on Amazon women’s clothing, including 50,046 samples and six features. We proposed a content-based memory-based method using Word2vec + IDF and a collaboration-based model-based method using the SVD algorith
20#
發(fā)表于 2025-3-25 09:45:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 09:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
花莲县| 方正县| 平遥县| 团风县| 城固县| 昂仁县| 嘉兴市| 曲水县| 南江县| 双牌县| 富川| 肇源县| 大理市| 徐汇区| 南宁市| 甘德县| 嘉荫县| 吉安市| 离岛区| 陈巴尔虎旗| 普兰县| 徐水县| 商水县| 太白县| 陵水| 酉阳| 曲麻莱县| 河南省| 昭平县| 宝鸡市| 罗平县| 库尔勒市| 龙井市| 鲁山县| 乡城县| 峨眉山市| 苗栗县| 维西| 北川| 措美县| 新兴县|